• Title/Summary/Keyword: in vitro experiments

Search Result 1,055, Processing Time 0.034 seconds

The biofilm removal effect of MnO2-diatom microbubbler from the dental prosthetic surfaces: In vitro study (치과 보철 재료 표면에서 MnO2-diatom microbubbler의 세균막 제거 효과 연구: In vitro study)

  • Lee, Eun-Hyuk;Seo, Yongbeom;Kwon, Ho-Bum;Yim, Young-Jun;Kong, Hyunjoon;Kim, Myung-Joo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.58 no.1
    • /
    • pp.14-22
    • /
    • 2020
  • Purpose: The aim of this study is to evaluate the effectiveness of MnO2-diatom microbubbler (DM) on the surface of prosthetic materials as a mouthwash by comparing the biofilm removal effect with those previously used as a mouthwash in dental clinic. Materials and methods: DM was fabricated by doping manganese dioxide nanosheets to the diatom cylinder surface. Scanning electron microscopy (SEM) was used to observe the morphology of DM and to analyze the composition of doped MnO2. Stereomicroscope was used to observe the reaction of DM in 3% hydrogen peroxide. Non-precious metal alloys, zirconia and resin specimens were prepared to evaluate the effect of biofilm removal on the surface of prosthetic materials. And then Streptococcus mutans and Porphyromonas gingivalis biofilms were formed on the specimens. When 3% hydrogen peroxide solution and DM were treated on the biofilms, the decontamination effect was compared with chlorhexidine gluconate and 3% hydrogen peroxide solution by crystal violet staining. Results: Manganese dioxide was found on the surface of the diatom cylinder, and it was found to produce bubble of oxygen gas when added to 3% hydrogen peroxide. For all materials used in the experiments, biofilms of the DM-treated groups got effectively removed compared to the groups used with chlorhexidine gluconate or 3% hydrogen peroxide alone. Conclusion: MnO2-diatom microbubbler can remove bacterial membranes on the surface of prosthetic materials more effectively than conventional mouthwashes.

The effect of Ca-P coatings of anodized implant surface on response of osteoblast-like cells in vitro (임플란트 표면의 Ca-P 코팅 방법이 MG63 골모유사세포 반응에 미치는 영향에 대한 in vitro 연구)

  • Kim, Il-Yeon;Jung, Sung-Min;Hwang, Soon-Jung;Shin, Sang-Wan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.4
    • /
    • pp.376-384
    • /
    • 2009
  • Purpose: The purpose of this study was to evaluate the response of osteoblast-like cells to Ca-P coated surface obtained via Ion beam-assisted deposition (IBAD) method and Sol-Gel process on anodized surface by cellular proliferation and differentiation. Material and methods: The surface of a commercially pure titanium (Grade IV) discs with dimension of 10mm diameter and 2 mm thickness was modified by anodic oxidation under a constant voltage of 300 V. The experimental groups were coated with Ca-P by the IBAD method and Sol-Gel process on anodized surface. The surface roughness (Ra) of specimens was measured by optical interferometer and each surface was examined by SEM. To evaluate cell response, MG63 cells were cultured and cell proliferation, ALP activity and the ability of cell differentiation were examined. Also, cell morphology was examined by SEM. The significant of each group was verified by Kruskal-Wallis Test ($\alpha$=.05). Results: The Ra value of Ca-P coated surface by IBAD method was significantly higher than Ca-P coated surface by Sol-gel process (P < .05). The level of cell proliferation and ALP activity was higher in Ca-P coated surface by IBAD method (P<.05). The expression of ALP showed higher level expression in Ca-P coated surface by IBAD method. Cells grown on Ca-P coated surface by IBAD method were uniformly distributed and developed a very close layer. Conclusion: These experiments showed better performances of Ca-P coated surface by IBAD method with respect to Ca-P coated surface by Sol-gel process. Ca-P coated surface by IBAD method appear to give rise more mature osteoblast characteristics and might result in increased bone growth and bone-implant contact.

Preparation of Biodegradable Polymer Microparticles Containing 5-FU Using Supercritical Carbon Dioxide (초임계 이산화탄소를 이용한 5-FU 함유 생분해성 고분자 미세입자 제조)

  • Jung, Ju-Hee;Jung, In-Il;Joo, Hyun-Jae;Shin, Jae-Ran;Lim, Gio-Bin;Ryu, Jong-Hoon
    • KSBB Journal
    • /
    • v.23 no.5
    • /
    • pp.452-459
    • /
    • 2008
  • To obtain maximal efficacy with minimal systemic side-effects, many studies have been carried out to achieve the controlled release of 5-fluorouracil (5-FU). In this study, biodegradable poly(L-lactide) (L-PLA) microparticles containing 5-FU were prepared by a process, called aerosol solvent extraction system (ASES), utilizing supercritical carbon dioxide. The effects of various organic solvents, drug/polymer feeding ratio, polymer molecular weight, and blending with the same polymers with different molecular weights on the formation of 5-FU loaded microparticles were investigated under a predetermined operating condition from our previous study. The drug recovery, entrapment efficiency, and in vitro drug release kinetics were determined by HPLC assays. The drug recovery obtained from the ASES process was found to be very high, whereas the drug entrapment efficiency was considerably low in all the experiments due to the poor affinity between L-PLA and 5-FU. These results indicated that the precipitation rate of L-PLA might be quite different from that of 5-FU so that there was little chance to form 5-FU loaded L-PLA microparticles.

Suppression of Powdery Mildew Using the Water Extract of Xylogone ganodermophthora and Aqueous Potassium Phosphonate Solution on Watermelon under Greenhouse Conditions (Xylogone ganodermophthora 배양체 추출물 및 아인산칼륨 수용액을 이용한 시설수박 흰가루병 발생 억제효과)

  • Kang, Hyo-Jung;Kim, Youngsang;Kim, Taeil;Jeong, Taek Ku;Han, Chong U;Nam, Sang Young;Kim, Ik-Jei
    • Research in Plant Disease
    • /
    • v.21 no.4
    • /
    • pp.309-314
    • /
    • 2015
  • Xylogone ganodermophthora (Xg) is an ascomycetous fungus that causes yellow rot on cultivated Ganoderma lucidum. Previously, we reported in vitro antifungal activities of a Xg culture extract against several watermelon pathogens. In 2014, we conducted greenhouse experiments to evaluate the control efficacy of a water extract of cultured Xg on watermelon powdery mildew (WPM). The test material (stock solution, ca. $4,000{\mu}g/ml$) was prepared by an autoclaved Xg culture in water at a ratio of 800 g of culture per 6 liter of water, and then filtering it through filter paper. Six foliar applications of the solutions (diluted 100- and 1,000-fold) significantly suppressed the formation of conidiophores and conidia. The inhibitory effect of aqueous potassium phosphonate solution on the disease and its phytotoxicity was tested. Phytotoxicity on watermelon plants was observed at concentrations of 1,000 and $2,000{\mu}g/ml$ as irregular brownish spots. The control efficacies against WPM were 91.9% at $2,000{\mu}g/ml$, 64.9% at $1,000{\mu}g/ml$, and 62.2% at $500{\mu}g/ml$.

Biocontrol Activity of Myxococcus sp. KYC 1126 against Phytophthora Blight on Hot Pepper (점액세균 Myxococcus sp. KYC 1126을 이용한 고추 역병 생물학적 방제 효능)

  • Kim, Sung-Taek;Yun, Sung-Chul
    • Research in Plant Disease
    • /
    • v.17 no.2
    • /
    • pp.121-128
    • /
    • 2011
  • Bacteriolytic myxobacteria have been known to secrete various antifungal metabolites against several soilborne phytopathogens including Phytophthora. Among the three isolates of Myxococcus spp., KYC 1126 and KYC 1136 perfectly inhibited the mycelial growth of Phytophtora capsici in vitro. In order to show the biocontrol activity on Phytophthora blight of hot pepper, we tried to find the best way of application of a myxobacterial isolate. Although KYC 1126 fruiting body was easily grown on the colony of Escherichia coli as a nutrient source, it did not control the disease when it was pre-applied in soil. Before the bioassay of a liquid culture filtrate of KYC 1126 was conducted, its antifungal activity was confirmed on the seedlings applying with the mixture of the pathogen's zoospore suspension and KYC 1126 filtrate. On greenhouse experiments with five and four replications, the control value of KYC 1126 on phyllosphere and rhizosphere was 88% and 36%, respectively. Whereas, the control value of dimetnomorph+propineb on phyllosphere was 100% and that of propamorcarb on rhizosphere was 44%. There was a phytotoxicity of the myxobacterial filtrate when seedlings were washed and soaked for 24 hours. Gummy materials were covered with roots. And stem and petiole were constricted, then a whole seedling was eventually blighted.

Inhibitory Effects of Several Korean Traditional Herbs on Anaphylactic Reaction and Mast Cell Activation (아나필락시스 반응과 비만세포 활성화에 대한 한국전통약제의 억제효과)

  • Chai, Ok-Hee
    • Applied Microscopy
    • /
    • v.40 no.4
    • /
    • pp.201-209
    • /
    • 2010
  • Korean traditional herbs, especially Anemarrhena asphodeloides (A. asphodeloides), Salvia miltiorrhiza (S. miltiorrhiza), and Terminalia chebula (T. chebula) have been known to have the immunomodulatory, anti-tumor, and anti-inflammatory effects. However, direct cellular mechanism underlying the mast cell-mediated anaphylaxis-like reaction has poorly been understood. In the present study, the effects of the methanol extracts of A. asphodeloides (MEAA), S. miltiorrhiza (MESM), and T. chebula (METC) on anaphylactic reaction were investigated. Using in vitro and in vivo experiments, the influences of MEAA, MESM, and METC on the compound 48/80-induced anaphylaxis-like reaction and mast cell activation, and IgEmediated PCA were examined. Results are below; 1) MEAA, MESM, and METC significantly inhibited systemic anaphylaxis-like reaction, ear swelling response, and IgE-mediated PCA. 2) the compound 48/80-induced mast cell degranulation, histamine release of rat peritoneal mast cells (RPMC) were significantly inhibited by the pretreatment with MEAA, MESM, and METC, and 3) the compound 48/80-induced calcium influx in RPMC was significantly inhibited by the pretreatment with MEAA, MESM, and METC. These results suggest that MEAA, MESM, and METC may be an activity to inhibit the compound 48/80-induced or anti-DNP IgE-mediated anaphylactic reactions by blocking histamine release and calcium uptake into RPMC. MEAA, MESM, and METC potentially may serve as an effective therapeutic tool for allergic diseases.

Development of Porous Cellulose Hydrogel for Enhanced Transdermal Delivery of Liquiritin and Liquiritigenin as Licorice Flavonoids (감초 플라보노이드 Liquiritin 및 Liquiritigenin을 담지한 피부전달체인 셀룰로오스 다공성 하이드로젤 제형 개발)

  • Kim, Su Ji;Kwon, Soon Sik;Yu, Eun Ryeong;Park, Soo Nam
    • Polymer(Korea)
    • /
    • v.38 no.5
    • /
    • pp.676-681
    • /
    • 2014
  • Licorice, widely used as a herbal medicine, has flavonoids such as liquiritin and its aglycone, liquiritigenin that show anti-oxidant and anti-inflammatory properties. Licorice flavonoid-loaded cellulose hydrogels were prepared as carriers for skin drug delivery, and their properties were investigated. The porous cellulose hydrogel was made by reacting cellulose with epichlorohydrin as a cross-linking agent in NaOH/urea(1~10%) solutions. Through studies on the rheological properties and water uptake of the hydrogel, a NaOH/urea(6%) solution was established as being optimum for the synthesis of the cellulose hydrogel containing liquiritin and liquiritigenin. Scanning electron microscopy (SEM) observations of a cross-section of the prepared hydrogel indicated its porosity. In particular, in skin permeation experiments using a Franz diffusion cell, hydrogel containing the licorice flavonoids showed remarkable transdermal permeation compared to the control group. These results indicate that porous cellulose hydrogel is a potential drug delivery system to enhance the skin permeation of licorice flavonoids.

Effect of Sinapis alba L. on expression of interferon-gamma and interleukin-4 production in anti-CD3/anti-CD28-stimulated CD4(+) T cells (CD4+ T cells에서 백개자가 IFN-$\gamma$와 IL-4 생성에 미치는 영향)

  • Park, Dae-Jung;Lee, Jang-Cheon;Lee, Young-Cheol
    • The Korea Journal of Herbology
    • /
    • v.25 no.2
    • /
    • pp.129-136
    • /
    • 2010
  • Objective : Sinapis alba L. (SA) is a korean traditional herbal medicine that is usually used to prevent or treat inflammatory diseases, such as respiratory infection and rheumatoid arthritis. However, the effects of SA supplementation in vitro on serum antibody levels, splenocyte and peritoneal macrophage immune responses have not yet been determined. In this study, we examined the effect of SA on the production of Th1/Th2 cytokines. Methods : Splenocytes were isolated from naive C57BL/6 mice. Cells were enriched for CD4+ cell populations by first staining the cells with anti-CD4 (BD PharMingen, Calif, USA). CD4+ T cells were selected on a (CS) column, and the flow-through was collected as CD4+ T cells. Isolated cells were activated by overnight incubation on 24-well plates coated with $1{\mu}g/mL$ anti-CD3, $1{\mu}g/mL$ anti-CD28 and with SA ($100{\mu}g/mL$). Primary macrophages were collected from the peritoneal cavities of mice (8-week-old female C57BL/6). The peritoneal macrophages were washed and plated with RPMI-1640 overnight for the experiments. After 48-hours cultures, samples were centrifuged at 2000 rpm for 10 minutes, and the supernatants were stored at $-80^{\circ}C$. Mouse IL-4, IFN-$\gamma$ and TNF-$\alpha$ were quantified using ELISA kits (BioSource International, Camarillo, Calif, USA) according to the manufacturer's protocols. Results : SA at 100ug/ml decreased the generation of Th1 cytokine (IFN-$\gamma$) by 0.5-fold. However, SA has no effect on Th2 (IL-4) production. Conclusions : These results suggest that SA may play an important role in the control of T-cell-mediated autoimmunity by down-regulation of Th1 cytokine (especially IFN-$\gamma$, TNF-$\alpha$). These data may contribute to the design of new immunomodulating treatments for a group of autoimmune diseases.

Cardioprotective effect of ginsenoside Rb1 via regulating metabolomics profiling and AMP-activated protein kinase-dependent mitophagy

  • Hu, Jingui;Zhang, Ling;Fu, Fei;Lai, Qiong;Zhang, Lu;Liu, Tao;Yu, Boyang;Kou, Junping;Li, Fang
    • Journal of Ginseng Research
    • /
    • v.46 no.2
    • /
    • pp.255-265
    • /
    • 2022
  • Background: Ginsenoside Rb1, a bioactive component isolated from the Panax ginseng, acts as a remedy to prevent myocardial injury. However, it is obscure whether the cardioprotective functions of Rb1 are related to the regulation of endogenous metabolites, and its potential molecular mechanism still needs further clarification, especially from a comprehensive metabolomics profiling perspective. Methods: The mice model of acute myocardial ischemia (AMI) and oxygen glucose deprivation (OGD)-induced cardiomyocytes injury were applied to explore the protective effect and mechanism of Rb1. Meanwhile, the comprehensive metabolomics profiling was conducted by high-performance liquid chromatography and quadrupole time-of-flight mass spectrometry (HPLC-Q/TOF-MS) and a tandem liquid chromatography and mass spectrometry (LC-MS). Results: Rb1 treatment profoundly reduced the infarct size and attenuated myocardial injury. The metabolic network map of 65 differential endogenous metabolites was constructed and provided a new inspiration for the treatment of AMI by Rb1, which was mainly associated with mitophagy. In vivo and in vitro experiments, Rb1 was found to improve mitochondrial morphology, mitochondrial function and promote mitophagy. Interestingly, the mitophagy inhibitor partly attenuated the cardioprotective effect of Rb1. Additionally, Rb1 markedly facilitated the phosphorylation of AMP-activated protein kinase α (AMPKα), and AMPK inhibition partially weakened the role of Rb1 in promoting mitophagy. Conclusions: Ginsenoside Rb1 protects acute myocardial ischemia injury through promoting mitophagy via AMPKα phosphorylation, which might lay the foundation for the further application of Rb1 in cardiovascular diseases.

The Wormicidal Substances of Fresh Water Fishes on Clonorchis sinensis VII. The Effect of Linolelc Acid and Ethyl Linoleate on Parasite Viability (간흡충에 대한 살충성 물질에 관한 연구)

  • Lee, Jae-Gu;Lee, Sang-Bok;Kim, Pyeong-Gil
    • Parasites, Hosts and Diseases
    • /
    • v.26 no.3
    • /
    • pp.175-178
    • /
    • 1988
  • In an attempt to analyze the clonorchicidal activity of linoleic acid and ethyl linoleate in vitro, the wormicidal effects on Clonorchis sinensis were chronologically monitored in dose titration experiments. Encysted metacercariae were killed within a period of 31, $0{\pm}4.0$ min, 149.3k4. 1 min and $207.0{\pm}13.5$ min with 100.0 mg, 0.1 mg and 0.001 mg linoleic acid, respectively. The time required for the linoleic acid to kill adult worms was 167, $0{\pm}0.8$ min with 100.0mg, $253.0{\pm}0.8$ min with 0.1mg, and $277.0{\pm}0.8$ min at 0.001mg titration. Clonorchicidal activity of ethyl linoleate was relatively delayed as death was observed within $263.3{\pm}2.9$ min, $286.0{\pm}0.5$ min, and $318.0{\pm}0.8$ min for 100.0 mg/ml, 0.1 mg/ml and 0.001 mg/ml concentrations, respectively. The wormicidal effects observed with these pure anti-clonorchal substances were found to be similar to the biological activity of native products derived from the mucus of the fresh water fish.

  • PDF