• Title/Summary/Keyword: in vitro embryo

Search Result 1,280, Processing Time 1.153 seconds

Multiple Shoot Formation of Gentiana axillariflora Leveille by in Vitro Culture (큰용담의 기내증식에서 multiple shoot의 유기)

  • Lim, Jung-Dae;Yu, Chang-Yeon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.8 no.1
    • /
    • pp.41-48
    • /
    • 2000
  • This study was aimed to proliferate Gentiana axillariflora Leveille which is one of the important medicinal and ornamental plants, by establishment of multiple shoot formation and embryogenesis through tissue culture technique. Callus was formed on MS (Murashige and Skoog) medium supplemented with 2,4-D, CPA, but not formed with BAP. The addition of 2,4-D 2 mg/ l into the medium was effective for callus formation and the rate of callus formation was about 90%. Somatic embryos were obtained on MS medium for two months. When callus was cultured on MS medium with combination treatment of 2,4-D 0.5 mg/ l and BAP 0.5 mg/ l, the number of embryo formed was better than that of other single or combination treatments and the total numbers of embryo a were 18.8 (number of total embryo/number of explants incubated = 753/40) at mean. Callus induction from stem and node explants was increased by addition of TDZ 2 mg/ l in the presence of 2,4-D 2 mg/ l, respectively. The best result about the differentiation of shoots was obtained on MS medium added BAP 2 mg/ l from node culture. Multiple shoots from shoot apex were induced on MS medium containing BAP 1 mg/ I and TDZ 1 mg/ l , BAP 2 mg/ l and TDZ 1 mg/ l. The number of multiple shoots per one explant was above seventy plants. It was the most effective regeneration system for rapid multiplication of Gentiana axillariflora Leveille.

  • PDF

Effects of Prostaglandins on In Vitro Development of Bovine Embryos (소 체외 수정란의 체외 발육에 미치는 Prostaglandins의 영향)

  • Shin, S.O.;Park, S.B.;Park, C.K.
    • Journal of Embryo Transfer
    • /
    • v.22 no.1
    • /
    • pp.27-32
    • /
    • 2007
  • This study was conducted to examine the effects of prostaglandin $F_2{\alpha}(PGF_2{\alpha})$ and prostaglandin $E_2 (PGE_2)$ on the expansion and hatching of bovine embryos. During the in vitro culture, embryos were cultured with the following groups: (1) 0, 1, 10 and 100ng/ml $PGF_2{\alpha}$ (2) 0, 1, 10 and 100 ng/ml $PGF_2{\alpha}$, (3) low concentration of $PGF_2{\alpha}$ ; low concentration of $PGF_2{\alpha}$, (1ng/ml : 1ng/ml), (4) low concentration of $PGF_2{\alpha}$ : high concentration of $PGF_2{\alpha}$ (1ng/ml : 10ng/ml) (5) high concentration of $PGF_2{\alpha}$ : low concentration of $PGE_2$ (10ng/ml 1ng/ml) (6) high concentration of $PGF_2{\alpha}$ : high concentration of $PGE_2$(10 ng/ml : 10ng/ml). In the results of this study, treatment of $PGF_2{\alpha}$ or $PGE_2$ did not affect in vitro development to blastocysts. However, the hatching rates of embryos cultured with 10ng/ml $PGE_2$(10.3%) and 1ng/ml $PGF_2{\alpha}$ 10ng/ml $PGE_2$(22.2%) were significantly (P<0.05) higher than in control (4.3% and 12.7%) and other treatment groups. All groups treated with high concentrations of $PGF_2{\alpha}$ showed decreased hatching rates. Thus, this results suggested that $PGF_2{\alpha}\;and\;PGE_2$ were concerned with the hatching in bovine embryos, and their effects on hatching were different by the concentrations.

Isolation and Functional Examination of the Long Non-Coding RNA Redrum

  • Lee, Yerim;Park, Charny;Lee, Sanghyuk;Lee, Daekee;Kim, Jaesang
    • Molecules and Cells
    • /
    • v.41 no.2
    • /
    • pp.134-139
    • /
    • 2018
  • Here, we report isolation of multiple long non-coding RNAs (lncRNAs) expressed tissue-specifically during murine embryogenesis. One of these, subsequently came to be known as Redrum, is expressed in erythropoietic cells in fetal liver and adult bone marrow. Redrum transcription is also detected during pregnancy in the spleen where extramedullary hematopoiesis takes place. In order to examine the function of Redrum in vivo, we generated a gene-targeted murine model and analyzed its embryonic and adult erythropoiesis. The homozygous mutant embryo showed no apparent deficiency or defect in erythropoiesis. Adult erythropoiesis in bone marrow and in the spleen during pregnancy likewise showed no detectable phenotype as red blood cells matured in normal fashion. The phenotype is in contrast to the reported function of Redrum in vitro, and our observation implies that Redrum plays in vivo an accessory or supplementary role whose loss is compatible with normal erythropoiesis.

Myelination by co-culture of neurons and schwann cells and demyelination by virus infection (뉴런세포와 슈반세포의 공동배양에 의한 수초화와 바이러스 감염에 의한 탈수초화)

  • Sa, Young-Hee;Kweon, Tae Dong;Kim, Ji-Young;Kim, Hyun Joo;Lee, Bae Hwan;Hong, Seong-Karp
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.448-451
    • /
    • 2018
  • The purpose of this study was to investigate the developmental process of myelination by neuron and Schwann cell cultures and the development of demyelination by herpes simplex virus-1 infection by electron microscopy and molecular biological analysis. The dorsal root ganglion (DRG) was isolated from the mouse embryo and Schwann cells and neuronal cells were cultured in vitro. Neuronal cells treated with mitotic inhibitors and purified Schwann cells were co-cultured together to induce myelination. The herpes simplex virus-1 was infected with the co-cultured cells, and the demyelination was induced. The myelin protein zero (MPZ) antibody, which means the presence of myelin formation, was used and electron microscopy was used to observe the development of myelin and dehydration.

  • PDF

Actionspectra for Circadian Melatonin Rhythms in the Avian Pineal In Vitro

  • Kondo, Chieko;Haldar, Chandana;Tamotsu, Satoshi;Oishi, Tadashi
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.249-251
    • /
    • 2002
  • The avian pineal as well as the retina has been known to contain several types of photoreceptors with different visual pigments such as rhodopsin, iodopsin and the pineal specific opsin, pinopsin. These organs are also known to have circadian clock to regulate melatonin production. Exposure of animals to light causes a decline of the melatonin level and the phase shifts of melatonin rhythms in the pineal and retina. Therefore, the circadian clock system of these organs seem to consist of three elements, i.e., light input, oscillator and melatonin output systems. In birds, it was suggested that rhodopsin might be involved in the entrainment of pineal melatonin rhythms from the action spectrum experiment for controlling NAT activity rhythms. However, there are much more pinopsin-immunoreactive (Pino-IR) cells than rhodopsin (Rho-IR) and iodopsin (Iodo-IR) cells in the avian pineal. We found that Pino-IR cells appeared earlier embryonic stages than Rho-IR and Iodo-IR cells. So, we tried to identify the visual pigments involved in the circadian melatonin rhythms in the pineal and retina. Organ cultured pineals were exposed to monochromatic light to find out which opsin participates in regulation of melatonin rhythms. The action spectra showed a peak at 475nm, suggesting that pinopsin is the major photopigment to regulate melatonin production in birds.

  • PDF

Current Status and Prospects of Nuclear Transplantation Technology for Production of Cloned Animals (복제동물 생산을 위한 핵이식기술의 개발 현황과 전망)

  • 이효종
    • Journal of Veterinary Clinics
    • /
    • v.16 no.1
    • /
    • pp.163-176
    • /
    • 1999
  • The nuclear transplantation technique is known as the most potential and efficient method for producing large numbers of genetically identical animals from a single embryo and somatic cells. After Dolly was introduced in 1997, many scientists were amazed. A possibility came to a reality that live offspring could be produced with differentiated somatic cells from an adult animal. On the other side, many in the press and the sensationalists focused on the socially, ethically and scientifically unacceptable sides of the technology. In this article, the history, current status and prospects of the technological development of nuclear transplantation in mammals and its application to the production of cloned animals are described. For the efficient and successful production of cloned embryos by nuclear transplantation, the right selection, preactivation and micromanipulation of oocytes as capacious recipient cytoplasm, the adequate and benefitial preparation of multiple totipotent embryonic and somatic cells as donor nuclei, fusion of them and in vitro production of cloned embryos are very critical. Recently the overall efficiency of production of cloned embryos and offspring in livestock has been much improved. Cloning will also be a more efficient, faster and useful way of creating transgenic fetuses for gene therapies, gene pharming, organs for xenotransplantation by preselection and mass production of transgenic embryos and consequently improving the production efficiency in transgenic animals. Further technical development of nuclear transplantation will enable large-scale production of cloned livestock and in near future the commercial cloning of animals will become a reality.

  • PDF

Development of Zygotic Embryos and Seedlings is Affected by Radiation Spectral Compositions from Light Emitting Diode (LED) System in Chestnut (Castanea crenata S. et Z.)

  • Park, So-Young;Kim, Man-Jo
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.5
    • /
    • pp.750-754
    • /
    • 2010
  • Among the environmental conditions employed in micropropagation, light quality plays an important role in growth, specially morphogenesis and photosynthesis. The effect of radiation quality (350-740 nm) on the development and growth of zygotic embryos and in vitro plantlets of open-pollinated chestnut (Castanea crenata S. et Z.) were studied. Two types of explants were exposed for 4 weeks to cool white (W, as control), monochromatic red (R, peak emission 650 nm), monochromatic blue (B, peak emission 440 nm), red+blue (R+B, 1:1), or red+far-red (R+Fr, 1:1, far-red peak emission 720 nm) radiation from a light-emitting-diode (LED) system. While the zygotic embryos showed positive photoblastic behavior, their germination was inhibited by blue radiation. Hypocotyl elongation and root development were promoted by red radiation. The emergence of primary leaf and its expansion were faster under blue than under red radiation. In the plantlets, red and red+far-red radiation significantly increased the formation and growth of the root, whereas blue light reduced rooting. Therefore, radiation quality appears to influence some steps in the development of zygotic embryos and plantlets in the chestnut.

Saururus chinenesis Extracts Scavenge Reactive Oxygen Species and Modulate Nitric Oxide Production in Raw 264.7 Macrophages

  • Oh, Jang-Hee;Shon, Hee-Kyoung;Oh, Moon-You;Chung, An-Sik
    • Toxicological Research
    • /
    • v.18 no.2
    • /
    • pp.117-127
    • /
    • 2002
  • Saururus chinensis Baill has been used in Korean folk medicine for the treatment of various diseases such as edema, Jaundice, and furuncle. The components of this plant were extracted into four fraction. Among the four fraction, hexane and ethyl acetate fraction were highly toxic to 3T3 mouse embryo fibroblast and Raw 264.7 mouse macrophage, but n-butanol and residue fraction did not show any toxic effect to those cell lines. n-Butanol and residue fraction exhibited antioxidant effects on hydro-gen peroxide, hydroxyl radical, and superoxide anion directly in vitro and in the 3T3 fibroblasts. All the four fractions inhibited lipid peroxidation measured by thiobarbituric acid reactive substances (TBARS) formation. In addition, n-butanol and residue fraction showed inhibitory effects on lipopolysaccharide (LPS)-induced nitric oxide production, and also down-regulated inducible nitric oxide synthase (iNOS) mRNA transcription 6 h after LPS stimulation in Raw 204.7 cells. Only n-butanol fraction, which mainly consists of flavonoids, inhibited NF-kB activation by decreasing IkBa degradation 90 min after LPS stimulation. horn the results, it is suggested that this plant could be a good candidate material for drug development based on its antioxidant and/or anti-inflammatory constituents.

Differential Expression of Interferon-Tau Transcripts in Bovine Blastocysts Produced by In Vitro Fertilization and Somatic Cell Nuclear Transfer

  • Song, Bong-Suk;Koo, Deog-Bon;Gabbine Wee;Shim, Jung-Jae;Kim, Ji-Su;Lee, Kyung-Kwang;Han, Yong-Mahn
    • Proceedings of the KSAR Conference
    • /
    • 2004.06a
    • /
    • pp.228-228
    • /
    • 2004
  • Interferon-tau (IFN-τ) is the primary agent responsible for maternal recognition of pregnancy in cattle. Bovine embryos begine to express IFN-τ as the blastocyst forms. Pregnancy recognition in ruminants occurs when IFN-τ from the trophoblast prevents the increase of oxytocin receptors, disrupting luteolytic pulses of prostaglandin (PG) F2a by oxytocin. The expression of IFN-τ is strongly associated with the degree of methylation of the CpG islands in promoter region. (omitted)

  • PDF

General Transcription Factors and Embryonic Genome Activation

  • Oqani, Reza K.;Kang, Jung Won;Lin, Tao;Lee, Jae Eun;Jin, Dong-Il
    • Reproductive and Developmental Biology
    • /
    • v.38 no.1
    • /
    • pp.41-52
    • /
    • 2014
  • Embryonic genome activation (EGA) is a highly complex phenomenon that is controlled at various levels. New studies have ascertained some molecular mechanisms that control EGA in several species; it is apparent that these same mechanisms regulate EGA in all species. Protein phosphorylation, DNA methylation and histone modification regulate transcriptional activities, and mechanisms such as ubiquitination, SUMOylation and microRNAs post-transcriptionally regulate development. Each of these regulations is highly dynamic in the early embryo. A better understanding of these regulatory strategies can provide the possibility to improve the reproductive properties in mammals such as pigs, to develop methods of generating high-quality embryos in vitro, and to find markers for selecting developmentally competent embryos.