Browse > Article
http://dx.doi.org/10.12749/RDB.2014.38.1.41

General Transcription Factors and Embryonic Genome Activation  

Oqani, Reza K. (Department of Animal Science & Biotechnology, Research Center for Transgenic Cloned Pigs, Chungnam National University)
Kang, Jung Won (Department of Animal Science & Biotechnology, Research Center for Transgenic Cloned Pigs, Chungnam National University)
Lin, Tao (Department of Animal Science & Biotechnology, Research Center for Transgenic Cloned Pigs, Chungnam National University)
Lee, Jae Eun (Department of Animal Science & Biotechnology, Research Center for Transgenic Cloned Pigs, Chungnam National University)
Jin, Dong-Il (Department of Animal Science & Biotechnology, Research Center for Transgenic Cloned Pigs, Chungnam National University)
Publication Information
Abstract
Embryonic genome activation (EGA) is a highly complex phenomenon that is controlled at various levels. New studies have ascertained some molecular mechanisms that control EGA in several species; it is apparent that these same mechanisms regulate EGA in all species. Protein phosphorylation, DNA methylation and histone modification regulate transcriptional activities, and mechanisms such as ubiquitination, SUMOylation and microRNAs post-transcriptionally regulate development. Each of these regulations is highly dynamic in the early embryo. A better understanding of these regulatory strategies can provide the possibility to improve the reproductive properties in mammals such as pigs, to develop methods of generating high-quality embryos in vitro, and to find markers for selecting developmentally competent embryos.
Keywords
Embryonic gemone activation; Molecular mechanism; Transcriptional activity; Development;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Maxon ME, Goodrich JA, Tjian R (1994): Transcription factor IIE binds preferentially to RNA polymerase IIa and recruits TFIIH: a model for promoter clearance. Genes Dev 8:515-524.   DOI   ScienceOn
2 Mayer C, Grummt I (2006): Ribosome biogenesis and cell growth: mTOR coordinates transcription by all three classes of nuclear RNA polymerases. Oncogene 25:6384-6391.   DOI   ScienceOn
3 McStay B, Grummt I (2008): The epigenetics of r- RNA genes: from molecular to chromosome biology. Annu Rev Cell Dev Biol 24:131-157.   DOI   ScienceOn
4 Meininghaus M, Chapman RD, Horndasch M, Eick D (2000): Conditional expression of RNA polymerase II in mammalian cells. Deletion of the carboxyl- terminal domain of the large subunit affects early steps in transcription. J Biol Chem 275:24375-24382.   DOI   ScienceOn
5 Michels AA, Nguyen VT, Fraldi A, Labas V, Edwards M, Bonnet F, Lania L, Bensaude O (2003): MAQ1 and 7SK RNA interact with CDK9/cyclin T complexes in a transcription-dependent manner. Mol Cell Biol 23:4859-4869.   DOI
6 Miyara F, Migne C, Dumont-Hassan M, Meur AL, Cohen-Bacrie P, Aubriot FX, Glissant A, Nathan C, Douard S, Stanovici A (2003): Chromatin configuration and transcriptional control in human and mouse oocytes. Mol Reprod Dev 64:458-470.   DOI   ScienceOn
7 Moore GPM, Lintern-Moore S, Peters H, Faber M (1974): RNA synthesis in the mouse oocyte. J Cell Biol 60:416-422.   DOI   ScienceOn
8 Motlik J, Fulka J. 1976 Breakdown of the germinal vesicle in pig oocytes in vivo and in vitro. J Exp Zool 198:155-162.   DOI   ScienceOn
9 Napolitano G, Licciardo P, Carbone R, Majello B, Lania L (2002): CDK9 has the intrinsic property to shuttle between nucleus and cytoplasm, and enhanced expression of cyclin T1 promotes its nuclear localization. J Cell Physiol 192:209-215.   DOI   ScienceOn
10 Kelly WG, Dahmus ME, Hart GW (1993): RNA polymerase II is a glycoprotein. Modification of the COOH-terminal domain by O-GlcNAc. J Biol Chem 268:10416-10424.
11 Kuhn CD, Geiger SR, Baumli S, Gartmann M, Gerber J, Jennebach S, Mielke T, Tschochner H, Beckmann R, Cramer P (2007): Functional architecture of RNA polymerase I. Cell 131:1260-1272.   DOI   ScienceOn
12 Lanclos KD, Hamilton TH (1975): Translation ofhormone- induced messenger RNA in amphibian oocytes. I.Induction by estrogen of messenger RNA encoded forvitellogenic protein in the liver of the male African clawedtoad (Xenopus laevis). Proc Natl Acad Sci USA 72: 3934-3938.   DOI   ScienceOn
13 Larochelle S, Chen J, Knights R, Pandur J, Morcillo P, Erdiument-Bromage H, Tempst P, Suter B, Fisher RP (2001): T-loop phosphorylation stabilizes the CDK7-cyclin HMAT1 complex in vivo and regulates its CTD kinase activity. EMBO J 20:3749-3759.   DOI   ScienceOn
14 Leclerc V, Raisin S, Leopold P (2000): Dominantnegative mutants reveal a role for the Cdk7 kinase at the mid-blastula transition in Drosophila embryos. EMBO J 19:1567-1575.   DOI   ScienceOn
15 Liu P, Greenleaf AL, Stiller JW (2008): The essential sequence elements required for RNAP II carboxylterminal domain function in yeast and their evolutionary conservation. Mol Biol Evol 25:719-727.   DOI   ScienceOn
16 Liu P, Kenney JM, Stiller JW, Greenleaf AL (2010): Genetic organization, length conservation, and evolution of RNA polymerase II carboxyl-terminal domain. Mol Biol Evol 27:2628-2641.   DOI   ScienceOn
17 Maller JL, Gross SD, Schwab MS, Finkielstein CV, Taieb FE, Oian YW (2001): Cell cycle transitions in early Xenopus development. Novartis Found Symp 237:58-73.
18 Hamatani T, Carter MG, Sharov AA, Ko MS (2004): Dynamics of global gene expression changes during mouse preimplantation development. Dev Cell 6:117-131.   DOI   ScienceOn
19 Hamatani T, Ko MSh, Yamada M, Kuji N, Mizusawa Y, Shoji M, Hada T, Asada H, Maruyama T, Yoshimura Y (2006): Global gene expression profiling of preimplantation embryos. Hum Cell 193: 98-117.
20 Hiller MA, Lin TY, Wood C, Fuller MT (2001): Developmental regulation of transcription by tissuespecific TAF homolog. Genes Dev 15: 1021-1030.   DOI   ScienceOn
21 Hozák P, Cook PR, Schöfer C, Mosgöller W, Wachtler F (1994): Site of transcription of ribosomal RNA and intranucleolar structure in HeLa cells. J Cell Sci 107:639-648.
22 Jao CY, Salic A (2008): Exploring RNA transcription and turnover in vivo by using click chemistry. Proc Natl Acad Sci USA 105:15779-15784.   DOI   ScienceOn
23 Iborra FJ, Pombo A, Jackson DA, Cook PR (1996): Active RNA polymerases are localized within discrete transcription "factories' in human nuclei. J Cell Sci 109:1427-1436.
24 Inoue K, Ogonuki N, Miki M, Noda S, Kim JM, Aoki F, Miyoshi H, Ogura A (2006): Inefficient reprogramming of the hematopoietic stem cell genome following nuclear transfer. J Cell Sci 119:1985-1991.   DOI   ScienceOn
25 Jackson DA, Hassan AB, Errington RJ, Cook PR (1993): Visualization of focal sites of transcription within human nuclei. EMBO J 12:1059-1065.
26 Kedinger C, Nuret P, Chambon P (1971): Structural evidence for two alpha-amanitin sensitive RNA polymerases in calf thymus. FEBS Lett 15:169-174.   DOI   ScienceOn
27 Kelland LR (2000): Flavopiridol, the first cyclin-dependent kinase inhibitor to enter the clinic: current status. Expert Opin Investig Drugs 9:2903-2911.   DOI   ScienceOn
28 Fraschini A, Bottone MG, Scovassi AI, Denegri M, Risueno MC, Testillano PS, Martin TE, Biggiogera M, Pellicciari C (2005): Changes in extranucleolar transcription during actinomycin D-induced apoptosis. Histol Histopathol 20:107-117.
29 Fu TJ, Peng J, Lee G, Price DH, Flores O (1999): Cyclin K functions as a CDK9 regulatory subunit and participates in RNA polymerase II transcription. J Biol Chem 274:34527-34530.   DOI   ScienceOn
30 Ganuza M, Saiz-Ladera C, Canamero M, Gomez G, Schneider R, Blasco MA, Pisano D, Paramio JM, Santamaria D, Barbacid M (2012): Genetic inactivation of Cdk7 leads to cell cycle arrest and induces premature aging due to adult stem cell exhaustion. EMBO J 31:2498-2510.   DOI   ScienceOn
31 Garber ME, Mayall TP, Suess EM, Meisenhelder J, Thompson NE, Jones KA (2000): CDK9 autophosphorylation regulates high-affinity binding of the human immunodeficiency virus type 1 tat-P-TEFb complex to TAR RNA. Mol Cell Biol 20:6958-6969.   DOI
32 Guthrie HD, Garrett WM (2000): Changes in porcine oocyte germinal vesicle development as follicles approach preovulatory maturity. Theriogenology 54:389-399.   DOI   ScienceOn
33 Ghazy MA, Brodie SA, Ammerman ML, Ziegler L M, Ponticelli AS (2004): Aminoacid substitutions in yeast TFIIF confer upstream shifts in transcription initiation and altered interactions with RNA polymerase II. Mol Cell Biol 24:10975-10985.   DOI   ScienceOn
34 Ginisty H, Amalric F, Bouvet P (1998): Nucleolin functions in the first step of ribosomal RNA processing. EMBO J 17:1476-1486.   DOI   ScienceOn
35 Goodrich JA, Tijian R (1994): Transcription factors IIE and IIH and ATP hydrolysis direct promoter clearance by RNA polymerase II. Cell 77:145-156.   DOI   ScienceOn
36 Hahn S (2004): Structure and mechanism of the RNA polymerase II transcription machinery. Nat Struct Mol Biol 11:394-403.   DOI   ScienceOn
37 Debey P, Szöllösi MS, Szöllösi D, Vautier D, Girousse A, Besombes D (1993): Competent mouse oocytes isolated from antral follicles exhibit different chromatin organization and follow different maturation dynamics. Mol Reprod Dev 36:59-74.   DOI   ScienceOn
38 Dey A, Nishiyama A, Karpova T, McNally J, Ozato K (2009): Brd4 marks select genes on mitotic chromatin and directs postmitotic transcription. Mol Biol Cell 20:4899-4909.   DOI
39 Dundr M, Raska I (1993): Nonisotopic ultrastructural mapping of transcription sites within the nucleolus. Exp Cell Res 208:275-281.   DOI   ScienceOn
40 Eissenberg JC, Shilatifard A, Dorokhov N, Michener DE (2007): Cdk9 is an essential kinase in Drosophila that is required for heat shock gene expression, histone methylation and elongation factor recruitment. Mol Genet Genomics 277:101-114.   DOI
41 Evsikov AV, Graber JH, Brockman JM, Hampl A, Holbrook AE, Singh P, Eppig JJ, Solter D, Knowles BB (2006): Cracking the egg: molecular dynamics and evolutionary aspects of the transition from the fully grown oocyte to embryo. Genes Dev 20:2713-2727.   DOI   ScienceOn
42 Byers SA, Price JP, Cooper JJ, Li Q, Price DH (2005): HEXIM2, a HEXIM1-related protein, regulates positive transcription elongation factor b through association with 7SK. J Biol Chem 280:16360-16367.   DOI   ScienceOn
43 Fair T, Hyttel P, Greve T (1995): Bovine oocyte diameter in relation to maturational competence and transcriptional activity. Mol Reprod Dev 42:437-442.   DOI   ScienceOn
44 Fong YW, Zhou Q (2000): Relief of two built-in autoinhibitory mechanisms in P-TEFb is required for assembly of a multicomponent transcription elongation complex at the human immunodeficiency virus type 1 promoter. Mol Cell Biol 20:5897-5907.   DOI
45 Forlani S, Bonnerot C, Capgras S, Nicolas JF (1998): Relief of a repressed gene expression state in the mouse 1-cell embryo requires DNA replication. Development 125:3153-3166.
46 Chambers RS, Dahmus ME (1994 Purification and characterization of a phosphatase from HeLa cells which dephosphorylates the C-terminal domain of RNA polymerase II. J Biol Chem 269:26243-26248.
47 Chao SH, Price DH (2001 Flavopiridol inactivates P-TEFb and blocks most RNA polymerase II transcription in vivo. J Biol Chem 276:31793-31799.   DOI   ScienceOn
48 Chao SH, Fujinaga K, Marion JE, Taube R, Sausville EA, Senderowicz AM, Peterlin BM, Price DH (2000 Flavopiridol inhibits P-TEFb and blocks HIV- 1 replication. J Biol Chem 275:28345-28348.   DOI   ScienceOn
49 Chapman RD, Heidemann M, Hintermair C, Eick D (2008): Molecular evolution of the RNA polymerase II CTD. Trends Genet 24:289-296.   DOI   ScienceOn
50 Cmarko D, Verschure PJ, Rothblum LI, Hernandez- Verdun D, Amalric F, van Driel R, Fakan S (2000): Ultrastructural analysis of nucleolar transcription in cells microinjected with 5-bromo-UTP. Histochem Cell Biol 113:181-187.   DOI
51 Crozet N, Motlik J, Szöllösi D. 1981 Nucleolar fine structure and RNA synthesis in porcine oocytes during the early stages of antrum formation. Biol Cell 41:35-42.
52 Bjerregaard B, Wrenzycki C, Philimonenko VV, Hozak P, Laurincik J, Niemann H, Motlik J, Maddox- Hyttel P (2004): Regulation of ribosomal RNA synthesis during the final phases of porcine oocyte growth. Biol Reprod 70:925-935.
53 De La Fuente R, Viveiros MM, Burns KH, Adashi EY, Matzuk MM, Eppig JJ (2004): Major chromatin remodeling in the germinal vesicle (GV) of mammalian oocytes is dispensable for global transcriptional silencing but required for centromeric heterochromatin function. Dev Biol 275:447-458.   DOI   ScienceOn
54 De Renzis S, Elemento O, Tavazoie S, Wieschaus EF (2007): Unmasking activation of the zygotic genome using chromosomal deletions in the Drosophila embryo. PLoS Biol 5(5):e117.   DOI
55 Biggiogera M, Fakan S, Kaufmann SH, Black A, Shaper JH, Busch H (1989): Simultaneous immunoelectron microscopic visualization of protein B23 and C23 distribution in the HeLa cell nucleolus. J Histochem Cytochem 37:1371-1374.   DOI   ScienceOn
56 Bloom AM, Mukherjee BB (1972): RNA synthesis in maturing mouse oocytes. Exp Cell Res 74:577-582.   DOI   ScienceOn
57 Boisvert FM, Hendzel MJ, Bazett-Jones D (2000 Promyelocytic leukemia (PML) nuclear bodies are protein structures that do not accumulate RNA. J Cell Biol 148:283-292.   DOI
58 Boisvert FM, van Koningsbruggen S, Navascués J, Lamond AI (2007): The multifunctional nucleolus. Nat Rev Mol Cell Biol 8:574-585.   DOI   ScienceOn
59 Bouniol C, Nguyen E, Debey P. 1995 Endogenous transcription occurs at the 1-cell stage in the mouse embryo. Exp Cell Res 218:57-62.   DOI   ScienceOn
60 Bouniol-Baly C, Hamraoui L, Guibert J, Beaujean N, Szöllösi MS, Debey P (1999): Differential transcriptional activity associated with chromatin configuration in fully grown mouse germinal vesicle oocytes. Biol Reprod 60:580-587.   DOI   ScienceOn
61 Bregman DB, L Du, S van der Zee, Warren SL (1995): Transcription-dependent redistribution of the large subunit of RNA polymerase II to discrete nuclear domains. J Cell Biol 129:287-298.   DOI   ScienceOn
62 Aoki E, Schultz RM (1999): DNA replication in the 1-cell mouse embryo: stimulatory effect of histone acetylation. Zygote 7:165-172.   DOI   ScienceOn
63 Bres V, Yoh SM, Jones KA (2008): The multi-tasking P-TEFb complex. Curr Opin Cell Biol 20:334-340.   DOI   ScienceOn
64 Buratowski S, Hahn S, Guarente L, Sharp PA (1989): Five intermediate complexes in transcription initiation by RNA polymerase II. Cell 56, 549-561.   DOI   ScienceOn
65 Ahn SH, Kim M, Buratowski S (2004): Phosphorylation of serine 2 within the RNA polymerase II C-terminal domain couples transcription and 3' end processing. Mol Cell 13:67-76.   DOI   ScienceOn
66 Aoki F, Worrad DM, Schultz RM (1997): Regulation of transcriptional activity during the first and second cell cycles in the preimplantation mouse embryo. Dev Biol 181:296-307.   DOI   ScienceOn
67 Aoki F, Worrad DM, Schultz RM (1997): Regulationof transcriptional activity during the first and second cell cyclesin the pre implantation mouse embryo. Dev Biol 181: 296-307.   DOI   ScienceOn
68 Bacharova R (1985): Gene expression during oogenesis and oocyte development in mammals. Dev Biol 1:453-524.
69 Bashirullah A, Halsell SR, Cooperstock RL, Kloc M, Karaiskakis A, Fisher WW, Fu W, Hamilton JK, Etkin LD, Lipshitz HD (1999): Joint action of two RNA degradation pathways controls the timing of maternal transcript elimination at the midblastula transition in Drosophila melanogaster. EMBO J 18:2610-2620.   DOI   ScienceOn
70 Bellier S, Chastant S, Adenot P, Vincent M, Renard JP, Bensaude O (1997a): Nuclear translocation and carboxyl-terminal domain phosphorylation of RNA polymerase II delineate the two phases of zygotic gene activation in mammalian embryos. EMBO J 16:6250-6262.   DOI   ScienceOn
71 Bellier S, Dubois MF, Nishida E, Almouzni G, Bensaude O (1997b): Phosphorylation of the RNA polymerase II largest subunit during Xenopus laevis oocyte maturation. Mol Cell Biol 17:1434-1440.   DOI
72 Bensaude O (2011): Inhibiting eukaryotic transcription: Which compound to choose? How to evaluate its activity? Transcription 2:103-108.   DOI
73 Tadros W, Goldman AL, Babak T, Menzies F, Vardy L, Orr-Weaver T, Hughes TR, Westwood JT, Smibert CA, Lipshitz H (2007): SMAUG is a major regulator of maternal mRNA destabilization in Drosophila and its translation is activated by the PAN GU kinase. Dev Cell 12:143-154.   DOI   ScienceOn
74 Aguilar-Fuentes J, Valadez-Graham V, Reynaud E, and Zurita M (2006): TFIIH trafficking and its nuclear assembly during early Drosophila embryo development. J Cell Sci 119: 3866-3875.   DOI   ScienceOn
75 Solow S, Salunek M, Ryan R, Liberman PM (2001): TAF250 phosphorylates human transcription factor IIA on serine residues important for TBP binding and transcription activity. J Biol Chem 276l:15886-15892.   DOI   ScienceOn
76 Sun XS, Liu Y, Yue KZ, Ma SF, Tan JH (2004): Changes in germinal vesicle (GV) chromatin configurations during growth and maturation of porcine oocytes. Mol Reprod Dev 69:228-234.   DOI   ScienceOn
77 Tan JH, Wang HL, Sun XS, Liu Y, Sui HS, Zhang J (2009): Chromatin configurations in the germinal vesicle of mammalian oocytes. Mol Hum Reprod 15:1-9.   DOI   ScienceOn
78 Thomas MC, Chiang CM (2006) The general transcription machinery and general cofactors. Crit Rev Biochem Mol Biol 41:105-178.   DOI   ScienceOn
79 Tombácz I, Schauer T, Juhász I, Komonyi O, Boros I (2009): The RNA Pol II CTD phosphatase Fcp1 is essential for normal development in Drosophila melanogaster. Gene 446:58-67.   DOI   ScienceOn
80 Walker AK, Boag PR, Blackwell TK (2007): Transcription reactivation steps stimulated by oocyte maturation in C. elegans. Dev Biol 304: 382-393.   DOI   ScienceOn
81 Wang Z, Lindquist S (1998): Developmentally regulated nuclear transport of transcription factors in Drosophila embryos enable the heat shock response Development 125:4841-4850.
82 Schmerwitz UK, Sass G, Khandoga AG, Joore J, Mayer BA, Berberich N, Totzke F, Krombach F, Tiegs G, Zahler S, Vollmar AM, Fürst R (2011): Flavopiridol protects against inflammation by attenuating leukocyte-endothelial interaction via inhibition of cyclin-dependent kinase 9. Arterioscler Thromb Vasc Biol 2:280-288.
83 Senderowicz AM, Sausville EA (2000): Preclinical and clinical development of cyclin-dependent kinase modulators. J Natl Cancer Inst 92:376-387.   DOI   ScienceOn
84 Schneider DA (2012): RNA polymerase I activity is regulated at multiple steps in the transcription cycle: recent insights into factors that influence transcription elongation. Gene 493:176-184.   DOI
85 Schoenbeck RA, Peters MS, Rickords LF, Stumpf TT, Prather RS 1992 Characterization of deoxyribonucleic acid synthesis and the transition from maternal to embryonic control in the 4-cell porcine embryo. Biol Reprod 47:1118-1125.   DOI   ScienceOn
86 Schultz RM (2002): The molecular foundations of the maternal to zygotic transition in the preimplantation embryo. Hum Reprod Update 8:323-331.   DOI   ScienceOn
87 Serizawa H, Conaway JW, Conaway RC (1993): Phosphorylation of C-terminal domain of RNA polymerase II is not required in basal transcription. Nature 363:371-374.   DOI
88 Seydoux G, Dunn MA (1997): Transcriptionally repressed germ cells lack a subpopulation of phosphorylated RNA polymerase II in early embryos of Caenorhabditis elegans and Drosophila melanogaster Development 124:2191-2201.
89 Shilatifard A, Conoway RC, Conoway JW (2003): The RNA polymerase II elongation complex. Annu Rev Biochem 72:693-715.   DOI
90 Shim EY, Walker AK, Shi Y, Blackwell TK (2002): CDK-9/cyclin T (P-TEFb) is required in two postinitiation pathways for transcription in the C. elegans embryo. Genes Dev 16:2135-2146.   DOI
91 Sikorski TW, Buratowski S (2009): The basal initiation machinery: beyond the general transcription factors. Curr Opin Cell Biol 21:344-351.   DOI   ScienceOn
92 Pirngruber J, Shchebet A, Johnsen SA (2009): Insights into the function of the human P-TEFb component CDK9 in the regulation of chromatin modifications and co-transcriptional mRNA processing. Cell Cycle 8:3636-3642.   DOI   ScienceOn
93 Puvion-Dutilleul F, Puvion E, Bachellerie JP (1997): Early stages of pre-rRNA formation within the nucleolar ultrastructure of mouse cells studied by in situ hybridization with a 5'ETS leader probe. Chromosoma 105:496-505.   DOI
94 Prasanth KV, Sacco-Bubulya PA, Prasanth SG, Spector DL (2003): Sequential entry of components of the gene expression machinery into daughter nuclei. Mol Biol Cell 14:1043-1057.   DOI   ScienceOn
95 Prather RS, Ross JW, Isom SC, Green JA (2009): Transcriptional, post-transcriptional and epigenetic control of porcine oocyte maturation and embryogenesis. Soc Reprod Fertil 66:165-176.
96 Price DH (2000): P-TEFb, a cyclin-dependent kinase controlling elongation by RNA polymerase II. Mol Cell Biol 20:2629-2634.   DOI   ScienceOn
97 Ranish JA, Yudkosvsky N, Hahn S (1999): Intermediates in formation and activity of the RNA polymerase II preinitiation complex holoenzyme recruitment and a postrecruitment role for the TATA box and TFIIB. Genes Dev 13:49-63.   DOI
98 Razin SV, Gavrilov AA, Pichugin A, Lipinski M, Iarovaia OV, Vassetzky YS (2011): Transcription factories in the context of the nuclear and genome organization. Nucleic Acids Res 39:9085-9092.   DOI
99 Reese JC (2003): Basal transcription factors. Curr Opin Genet Dev 13:114-118.   DOI   ScienceOn
100 Rodman TC, Bachvarova R (1976): RNA synthesis in preovulatory mouse oocytes. J Cell Biol 70:251-257.   DOI
101 Yamaguchi Y, Takagi T, Wada T, Yano K, Furuya A, Sugimoto S, Hasegawa J, Handa H (1999): NELF, a multisubunit complex containing RD, cooperates with DSIF to repress RNA polymerase II elongation. Cell 97:41-51.   DOI
102 Yang Z, He N, Zhou Q (2008): Brd4 recruits PTEFb to chromosomes at late mitosis to promote G1 gene expression and cell cycle progression. Mol Cell Biol 28:967-976.   DOI   ScienceOn
103 Yang Z, Zhu Q, Luo K, Zhou Q (2001): The 7SK small nuclear RNA inhibits the CDK9/cyclin T1 kinase to control transcription. Nature 414:317-322.   DOI
104 Zhou Q, Yik JH (2006): The Yin and Yang of PTEFb regulation: implications for human immunodeficiency virus gene expression and global control of cell growth and differentiation. Microbiol Mol Biol Rev 70:646-659.   DOI
105 Yik JH, Chen R, Nishimura R, Jennings JL, Link AJ, Zhou Q (2003): Inhibition of P-TEFb (CDK9/ Cyclin T) kinase and RNA polymerase II transcription by the coordinated actions of HEXIM1 and 7SK snRNA. Mol Cell 12:971-982.   DOI
106 Zeng C, Kim E, Warren SL, Berget SM (1997): Dynamic relocation of transcription and splicing factors dependent upon transcriptional activity. EMBO J 16:1401-1412.   DOI
107 Zeng F, Schultz RM (2005): RNA transcript profiling during zygotic gene activation in the preimplantation mouse embryo. Dev Biol 283:40-57.   DOI
108 Zuccotti M, Merico V, Cecconi S, Redi CA, Garagna S (2011): What does it take to make a developmentally competent mammalian egg? Hum Reprod Update 17:525-540.   DOI
109 Zuccotti M, Piccinelli A, Rossi PG, Garagna S, Redi CA (1995): Chromatin organization during mouse oocyte growth. Mol Reprod Dev 41:479-485.   DOI   ScienceOn
110 Zurita M, Reynaud E, Aguilar-Fuentes J (2008): From the beginning: the basal transcription machinery and onset of transcription in the early animal embryo. Cell Mol Life Sci 65:212-227.   DOI
111 Wang K, Sun F, Sheng HZ (2006): Regulated expression of TAF-1 in cell mouse embryos. Zygote 14:209-215.   DOI
112 Wansink DG, Schul W, van der Kraan I, van Steensel B, van Driel R, de Jong L (1993): Fluorescent labeling of nascent RNA reveals transcription by RNA polymerase II in domains scattered throughout the nucleus. J Cell Biol 122: 283-293.   DOI
113 Warner JR (1999): The economics of ribosome biosynthesis in yeast. Trends Biochem Sci 24:437-440.   DOI   ScienceOn
114 Wassarman PM, Letourneau GE (1976): RNA synthesis in fully-grown mouse oocytes. Nature 261:73-74.   DOI
115 Yamaguchi Y, Inukai N, Narita T, Wada T, Handa H (2002): Evidence that negative elongation factor represses transcription elongation through binding to a DRB sensitivity-inducing factor/RNA polymerase II complex and RNA. Mol Cell Biol 22: 2918-2927.   DOI
116 Weinmann R, Raskas HJ, Roeder RG (1974): Role of DNA-dependent RNA polymerases II and III in transcription of the adenovirus genome late in productive infection. Proc Natl Acad Sci USA 71: 3426-3439.   DOI
117 Werner M, Thuriaux P, Soutourina J (2009): Structure- function analysis of RNA polymerases I and III. Curr Opin Struct Biol 19:740-745.   DOI
118 Worrad DM, Ram PT, Schultz RM (1994): Regulation of gene expressionin the mouse oocyte and early preimplantation embryo: developmental changes in Sp1 and TATA boxbinding protein, TBP. Development 120:2347-2357.
119 Ni Z, Schwartz BE, Werner J, Suarez JR, Lis JT (2004): Coordination of transcription, RNA processing, and surveillance by P-TEFb kinase on heat shock genes. Mol Cell 13:55-65.   DOI
120 Ochs RL (1998): Methods used to study structure and function of the nucleolus. Methods Cell Biol 53:303-321.
121 Orphanides G, Reinberg D (2002): A unified theory of gene expression. Cell 108:439-451.   DOI   ScienceOn
122 Orphanides G, Lagrange T, Reinberg D (1996): The general transcription factors of RNA polymerase II. Genes Dev 10:2657-2683.   DOI   ScienceOn
123 Palancade B, Bellier S, Almounzi G, Bensaude O (2001b): Incomplete RNA polymerase II phosphorylation in Xenopus laevis early embryos J Cell Sci 114:2483-2489.
124 Palancade B, Dubois MF, Dahmusd, Bensaude O (2001a): Transcription-independent RNA polymerase II dephosphorylation by the FCP1 carboxy-terminal domain phosphatase in Xenopus laevis early embryos. Mol Cell Biol 21:6359-6368.   DOI
125 Peng J, Zhu Y, Milton JT, Price DH (1998): Identification of multiple cyclin subunits of human PTEFb. Genes Dev 12:755-762.   DOI
126 Nguyen VT, Kiss T, Michels AA, Bensaude O (2001): 7SK small nuclear RNA binds to and inhibits the activity of CDK9/cyclin T complexes. Nature 414: 322-325.   DOI
127 Phatnani HP, Greenleaf AL (2006): Phosphorylation and functions of the RNA polymerase II CTD. Genes Dev 20:2922-2936.   DOI   ScienceOn
128 Napolitano G, Majello B, Lania L (2003): Catalytic activity of Cdk9 is required for nuclear co-localization of the Cdk9/cyclin T1 (P-TEFb) complex. J Cell Physiol 197:1-7.   DOI
129 Nguyen VT, Giannoni F, Dubois MF, Seo SJ, Vigneron M, Kédinger C, Bensaude O (1996): In vivo degradation of RNA polymerase II largest subunit triggered by alpha-amanitin. Nucleic Acids Res 24: 2924-2929.   DOI
130 Drygin D, Rice WG, Grummt I (2010): The RNA polymerase I transcription machinery: an emerging target for the treatment of cancer. Annu Rev Pharmacol Toxicol 50:131-156.   DOI   ScienceOn
131 Zurita M, Merino C (2003): The transcriptional complexity of the TFIIH complex. Trends Genet 19: 578-584. (Received: 17 March 2014/ Accepted: 24 March 2014)   DOI
132 Kopecny V, Landa V, Pavlok A (1995): Localization of nucleic acids in the nucleoli of oocytes and early embryos of mouse and hamster: an autoradiographic study. Mol Reprod Dev 41:449-458.   DOI   ScienceOn
133 Sims RJ 3rd, Mandal SS, Reinberg D (2004): Recent highlights of RNA-polymerase-II-mediated transcription. Curr Opin Cell Biol 16:263-271.   DOI   ScienceOn
134 Stiller JW, Cook MS (2004): Functional unit of the RNA polymerase II C-terminal domain lies within heptapeptide pairs. Eukaryot Cell 3:735-740.   DOI   ScienceOn
135 Wang, QT, Piotrowska K, Ciemerych MA, Milenkovic L, Scott M, Davis RW, Zernicka-Goetz M (2004): A genome-wide study of gene activity reveals developmental signaling pathways in the preimplantation mouse embryo. Dev Cell 6:133-144.   DOI   ScienceOn