• Title/Summary/Keyword: in situ thermal analysis

검색결과 122건 처리시간 0.019초

스트레인게이지를 활용한 발전소 터빈 및 주증기 배관의 열팽창 측정 (Thermal Expansion Measurement of Turbine and Main Steam Piping by Using Strain Gages in Power Plants)

  • 나상수;정재원;봉석근;전동기;김윤석
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.886-891
    • /
    • 2000
  • One of the domestic co-generation plants have undergone excessive vibration problems of turbine attributed to external force for years. The root cause of turbine vibration may be shan alignment problem which sometimes is changed by thermal expansion and external farce, even if turbine technicians perfectly performed it. To evaluate the alignment condition from plant start-up to full load, a strain measurement of turbine and main steam piping subjected to thermal loading is monitored by using strain gages. The strain gages are bonded on both bearing housing adjusting bolts and pipe stoppers which. installed in the x-direction of left-side main steam piping near the turbine inlet in order to monitor closely the effect of turbine under thermal deformation of turbine casing and main steam piping during plant full load. Also in situ load of constant support hangers in main steam piping system is measured by strain gages and its results are used to rebalance the hanger rod load. Consequently, the experimental stress analysis by using strain gages turns out to be very useful tool to diagnose the trouble and failures of not only to stationary components but to rotating machinery in power plants.

  • PDF

현장 열응답 시험을 통한 지중 열물성 추정 (Prediction of Ground Thermal Properties from Thermal Response Test)

  • 윤석;이승래;김영상;김건영;김경수
    • 한국지반공학회논문집
    • /
    • 제32권7호
    • /
    • pp.5-14
    • /
    • 2016
  • 최근 들어 경제적이고 친환경적인 에너지 활용을 위하여 지열에너지의 필요성이 점차 증대되고 있다. 특히 지열히트펌프 시스템(geothermal heat pump system)으로 불리는 지열 냉난방 시스템의 적용성이 계속 확대되고 있다. 이러한 지열히트펌프 시스템에서 지반의 열전도도와 열확산계수와 같은 지중 열물성은 설계 과정에서 매우 중요한 변수이기에 현장 열응답 시험(thermal response test)을 통해 지반의 열전도도를 산출해야 한다. 본 논문에서는 U와 2U 타입의 지중 열교환기를 매립지 지반에 설치한 후 48시간 동안 현장 열응답 시험을 수행하였으며 지반의 열전도도 뿐만 아니라 지반의 열확산계수를 비선형 회귀분석을 통해 산정할 수 있는 방안을 제시하였다. 또한 지중 열교환기가 설치된 지반의 시료를 채취하여 실내 열물성 실험을 수행하였으며 이를 현장 열응답 시험을 통해 도출된 지반의 열전도도 및 열확산계수 값과 비교하였다.

Preparation and characterization of boron-nitrogen coordination phenol resin/SiO2 nanocomposites

  • Gao, J.G.;Zhai, D.;Wu, W.H.
    • Advances in materials Research
    • /
    • 제3권1호
    • /
    • pp.259-269
    • /
    • 2014
  • The boron-nitrogen-containing phenol-formaldehyde resin (BNPFR)/$SiO_2$ nanocomposites (BNPFR/$SiO_2$) were synthesized in-situ, and structure of BNPFR/$SiO_2$ nanocomposites was characterized by FTIR, XRD and TEM. The loss modulus peak temperature $T_p$ of BNPFR/$SiO_2$ nanocomposites cured with different nano-$SiO_2$ content are determined by torsional braid analysis (TBA). The thermal degradation kinetics was investigated by thermogravimetric analysis (TGA). The results show that nano-$SiO_2$ particulate with about 50 nm diameter has a more uniformly distribution in the samples. The loss modulus peak temperature $T_p$ of BNPFR/$SiO_2$ nanocomposite is $214^{\circ}C$ when nano-$SiO_2$ content is 6 wt%. The start thermal degradation temperature $T_{di}$ is higher about $30^{\circ}C$ than pure BNPFR. The residual rate (%) of nanocomposites at $800^{\circ}C$ is above 40 % when nano-$SiO_2$ content is 9 %. The thermal degradation process is multistage decomposition and following first order.

In situ Gel Forming Stereocomplex Composed of Four-Arm PEG-PDLA and PEG-PLLA Block Copolymers

  • Jun, Yeo-Jin;Park, Kyung-Min;Joung, Yoon-Ki;Park, Ki-Dong;Lee, Seung-Jin
    • Macromolecular Research
    • /
    • 제16권8호
    • /
    • pp.704-710
    • /
    • 2008
  • Injectable hydrogels are quite promising materials due to their potential to minimize invasive implantation and this provides versatile fitness irrespective of the damaged regions and facilitates the incorporation of bioactive agents or cells. In situ gel formation through stereocomplex formation is a promising candidate for injectable hydrogels. In this paper, a new series of enantiomeric, four-arm, PEG-PLA block copolymers and their stereocomplexed hydrogels were prepared by bulk ring-opening polymerization of D-lactide and L-lactide, respectively, with stannous octoate as a catalyst. The prepared polymers were characterized by $^1H$ nuclear magnetic resonance (NMR) spectroscopy, Fourier-transform infrared (FT IR) spectroscopy, gel permeation chromatography (GPC) and thermal gravitational analysis (TGA), confirming the tailored structure and chain lengths. The swelling and degradation behavior of the hydrogels formed from a selected copolymer series were observed in different concentrations. The degradation rate decreased with increasing polymer content in the solution. The rheological behavior indicated that the prepared hydrogel underwent in situ gelation and had favorable mechanical strength. In addition, its feasibility as an injectable scaffold was evaluated using a media dependence test for cell culture. A Tris solution was more favorable for in situ gel formation than PBS and DMEM solutions were. These results demonstrated the in situ formation of hydrogel through the construction of a stereocomplex with enantiomeric, 4-arm, PEG-PLA copolymers. Overall, enantiomeric, 4-arm, PEG-PLA copolymers are a new species of stereocomplexed hydrogels that are suitable for further research into injectable hydrogels.

Mo-65.8at%Si 혼합분말의 기계적 합금화에 미치는 밀링매체 재료의 영향 (Effect of Milling Medium Materials on Mechanical Alloying of Mo-65.8at%Si Powder Mixture)

  • 박상보
    • 한국분말재료학회지
    • /
    • 제4권3호
    • /
    • pp.179-187
    • /
    • 1997
  • Milling media of steel and zirconia were used to produce $MoSi_2$ by mechanical alloying (MA) of Mo and Si powders. The effect of milling media on MA of Mo-65.8at%Si powder mixture has been investigated by SEM, XRD, DTh and in-situ thermal analysis. The powders mechanically alloyed by milling medium of steel for 8 hours showed the structure of fine mixture of Mo and Si, and those mechanically alloyed by milling medium of zirconia for longer milling time showed the structure of fine mixture of Mo and Si. The tetragonal $\alpha$-$MoSi_2$ Phase and the tetragonal $Mo_5Si_3$ phase appeared with small Mo peaks in the powders milled by milling medium of steel for 4 and 8 hours. The $\alpha$-$MoSi_2$ phase and the hexagonal $\beta$-$MoSi_2$ phase were formed after longer milling time. The $\alpha$-$MoSi_2$ phase appeared with large Mo peaks in the powders milled by milling medium of zirconia for 4 hours. The phases, $\alpha$-$MoSi_2$ and $\beta$-$MoSi_2$. were formed in the powders milled for longer milling time. DTA and annealing results showed that Mo and Si were transformed into $\alpha$-$MoSi_2$ and $Mo_5Si_3$, while $\beta$-$MoSi_2$ into $\alpha$-$MoSi_2$. In-situ thermal analysis results demonstrated that there were a sudden temperature rise at 212 min and a gradual increase in temperature in case of milling media of steel and zirconia, respectively. The results indicate that MA can be influenced by materials of milling medium which can give either impact energy on powders or thermal energy accumulated in vial.

  • PDF

부하변동에 의한 지중유효열전도도와 보어홀 전열저항 해석 (Analysis of Effective Soil Thermal Conductivities and Borehole Thermal Resistances with a Power Supply Regulation)

  • 노정근;연광석;송헌
    • 한국태양에너지학회 논문집
    • /
    • 제31권4호
    • /
    • pp.80-86
    • /
    • 2011
  • Investigation of the effective soil thermal conductivity(k) is the first step in designing the ground loop heat exchanger(borehole) of a geothermal heat pump system. Another important factor is the borehole thermal resistance($R_b$). Thermal response tests offer a good method to determine the ground thermal properties for the total heat transport in the ground. This is done by supplying a constant heat power into a borehole heat exchanger. There are two methods to supply a constant heat power. One is to employ the electricity provided by Korea Electric Power Corporation(KEPCO). The other is to use electricity generated by a generator. In this study, the power supply regulation was found to reduce when the electricity generated by the generator was used. This is because the generator evaluated with the power supply characteristically reduces the power supply regulation between an overload and a complex using. But it sometimes occurs a power supply regulation in In-situ thermal response test. In this case getting of k,$R_b$ requires delay times and restored normal state. However, the effect of the delay times and restored normal state on the soil thermal conductivity and borehole thermal resistance is very small. Therefore it is possible to use a generally accepted delay times and restored normal state in the analysis. In this work, it is also shown that an acceptable range of ${\Delta}k$, ${\Delta}R_b$ for normal state and regulation state might be approximately 0.01-0.16W/m k, and -0.004-0.007m K/W, respectively. Thus, restored normal state of power supply regulation is valuable to recommend.

현지 측정에 의한 남한지역의 지중유효열전도도, 보어홀 전열저항 및 초기온도 분석 (Analysis of Soil Thermal Conductivities, Borehole Thermal Resistances and Initial Soil Temperature with In-Situ Testing in South Korea)

  • 노정근;연광석;송헌
    • 한국태양에너지학회 논문집
    • /
    • 제32권5호
    • /
    • pp.68-74
    • /
    • 2012
  • Investigation of the effective soil thermal conductivity($k$) is the first step in designing the ground loop heat exchanger(borehole) of a geothermal heat pump system. Another important factor is the borehole thermal resistance($R_b$). Thermal response tests offer a good method to determine the ground thermal properties for the total heat transport in the ground. The first step is measured for initial soil temperature. This is done by supplying a only pump power into a borehole heat exchanger. They need to supply into water unload heat power more than 30 minutes. In this study, the initial soil temperature was found to analysis $14.1{\sim}16.0^{\circ}C$,the ratio was 68.7% represented. In this case of $k$, was 2.1~3.0 $W/m{\cdot}k$, $R_b$ was 0.11~0.20 $m{\cdot}K/W$. In this work, it is also shown that the distribution of a soil thermal conductivity and borehole thermal resistance were on the influence of initial soil temperature. And soil thermal conductivity was related with factors of equation by linear least square method, borehole thermal resistance was on the influence of composite factors.

실측과 컴퓨터 모델링을 통한 미기후 요소 및 인간 열환경지수의 차이 비교 분석 (Comparison of Differences on Microclimatic Factors and Human Thermal Sensation between in situ Measurement and Computer Modeling)

  • 박수국;공학양;강훈
    • Ecology and Resilient Infrastructure
    • /
    • 제7권1호
    • /
    • pp.43-52
    • /
    • 2020
  • 본 연구는 컴퓨터 모델링의 결과를 실측자료 보정없이 이용하였을 때의 문제점을 조사하기 위해, 작은 도시공원을 대상으로 실측자료와 컴퓨터 모델링 결과를 비교 분석하여 보았다. 컴퓨터 모델링 결과는 실측자료에 비해 미기후 요소인 기온과 풍속에서는 과소예측을 보였으며, 상대습도와 평균복사온도에서는 과대예측을 하는 것으로 나타났다. 그 차이는 인간 열환경지수인 PMV와 UTCI에서 최대 2.3 PMV와 4℃ UTCI의 차이를 보였다. 그러므로, 인간 열환경지수 (열쾌적성) 연구에서 컴퓨터 모델링을 이용할 때는 반드시 실측자료를 이용한 결과보정 과정을 거쳐 도시와 조경계획 및 디자인에 적용되어야 할 것이다.

Use of Modern Non­destructive Techniques in High Temperature Degradation of Material and Coatings

  • Lee, C.K.;Sohn, Y.H.
    • International Journal of Korean Welding Society
    • /
    • 제3권2호
    • /
    • pp.29-39
    • /
    • 2003
  • The durability and reliability of thermal barrier coatings (TBCs) play an important role in the service reliability, availability and maintainability (RAM) of hot­section components in advanced turbine engines for aero and utility applications. Photostimulated luminescence spectroscopy (PSLS) and electrochemical impedance spectroscopy (EIS) are being concurrently developed as complimentary non­destructive evaluation (NDE) techniques for quality control and life­remain assessment of TBCs. This paper overviews the governing principles and applications of the luminescence and the impedance examined in the light of residual stress, phase constituents and resistance (or capacitance) in TBC constituents including the thermally grown oxide (TGO) scale. Results from NDE by PSLS and EIS are discussed and related to the microstructural development during high temperature thermal cycling, examined by using a variety of microscopic techniques including focused ion beam (FIB) in­situ lift­out (INLO), transmission and scanning transmission electron microscopy (TEM and STEM).

  • PDF

$BaMgF_4$ 박막을 이용한 MFS 디바이스의 열처리 의존성 (Thermal treatment dependences of MFS devices in $BaMgF_4$ thin films on silicon structures)

  • 김채규;정순원;이상우;김광호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1998년도 춘계학술대회 논문집
    • /
    • pp.59-62
    • /
    • 1998
  • Thermal treatment dependences of MFS devices in $BaMgF_4$ on Si structures have been investigated. $BaMgF_4$ thin films have been directly deposited on the p-Si(100) wafers at a low temperature of $300^{\circ}$ in an ultra high vacuum(UHV) system. After in-situ post-deposition annealing was conducted for 20 s at $650^{\circ}$, bias and temperature were applied to $BaMgF_4/Si$ structures. Although X-ray diffraction analysis showed that the films were polycrystalline in nature before and after bias temperature, the C-V properties were some different between with and without bias-temperature treatment.

  • PDF