• 제목/요약/키워드: in situ spectroscopy

검색결과 272건 처리시간 0.029초

Effect of ${\gamma}$-Ray Irradiation on Surface Oxidation of Ultra High Molecular Weight Polyethylene/Zirconia Composite Prepared by in situ Ziegler-Natta Polymerization

  • Kwak, Soon-Jong;Noh, Dong-Il;Chun, Heung-Jae;Lim, Youn-Mook;Nho, Young-Chang;Jang, Ju-Woong;Shim, Young-Bock
    • Macromolecular Research
    • /
    • 제17권8호
    • /
    • pp.603-608
    • /
    • 2009
  • Novel ultra-high molecular weight polyethylene (UHMWPE)/zirconia composites were previously prepared by the in situ polymerization of ethylene using a Ti-based Ziegler-Natta catalyst supported on to the surface of zirconia, as a bearing material for artificial joints. Tribological tests revealed that a uniform dispersion of zirconia in UHMWPE markedly increased the wear resistance. The effects of zirconia content on the oxidation behavior of the ${\gamma}$-ray-treated UHMWPE/zirconia composite surfaces were examined. The oxidation index that estimates the oxidation degree as the content of total carbonyl compounds was monitored using Fourier transform infrared spectroscopy-attenuated total reflectance. The changes in the surface composition due to the oxidation were confirmed by electron spectroscopy for chemical analysis. The extent of oxidation decreased with increasing zirconia content, which was attributed to the increased crystallinity as well as the decreased polymer portion of the UHMWPE/zirconia composites.

CF$_4$ 플라즈마 처리로 불소를 첨가한 실록산 Spin-On-Glass 박막의 특성 (Properties of Spin-On-Glass Siloxane Thin Films Fluorine-doped by CF$_4$ Plasma)

  • 김현중;김기호
    • 한국표면공학회지
    • /
    • 제34권3호
    • /
    • pp.258-263
    • /
    • 2001
  • Siloxane thin films were fabricated on a silicon wafer by spin-coating using a siloxane solution made by the sol-gel process. Fluorine was doped using$ CF_4$ plasma treatment. The film was then annealed in-situ state in the nitrogen atmosphere. In order to examine the influence of annealing and fluorine doping on the siloxane thin film, thermogravimetric-differential thermal analysis (TG-DTA), Fourier transform-infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) were used and the dielectric constant was determined by the high-frequency capacitance-voltage method. Stable siloxane films could be obtained by in-situ annealing in a nitrogen atmosphere after $CF_4$ plasma treatment, and the dielectric value of the film was $\varepsilon$ 2.5.

  • PDF

In Situ X-ray Absorption Spectroscopic Study for α-MoO3 Electrode upon Discharge/Charge Reaction in Lithium Secondary Batteries

  • Kang, Joo-Hee;Paek, Seung-Min;Choy, Jin-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권12호
    • /
    • pp.3675-3678
    • /
    • 2010
  • In-situ X-ray absorption spectroscopy (XAS) was used to elucidate the structural variation of $\alpha-MoO_3$ electrode upon discharge/charge reaction in a lithium ion battery. According to the XAS analysis, hexavalent Mo atoms in $\alpha-MoO_3$ framework are reduced as the amount of intercalated lithium ions increases. As lithium de-intercalation proceeds, most of pre-edge peaks are restored again. However, according to the Fourier transforms of the extended X-ray absorption fine structure (EXAFS) spectra, lithium de-intercalation reaction is partially irreversible upon the charge reaction, which is one of the main reasons why the capacity of $\alpha-MoO_3$ electrode decreases upon successive discharge/charge cycles.

농도가 진한 매질에서 광증감제에 의한 광학적 파라미터측정에 관한 연구 (A Study on the Measurements of Optical Parameters in Photosensitizer by Light Scattering)

  • 김기준;이주엽
    • 한국응용과학기술학회지
    • /
    • 제28권1호
    • /
    • pp.102-108
    • /
    • 2011
  • The study of wave propagation and scattering in biological media has become increasingly important in recent years. The propagation of light within tissues is an important problem that confronts the dosimetry of therapeutic laser delivery and the development of diagnostic spectroscopy. In the clinical application of photodynamic therapy(PDT) and in photobiology, the photon deposition within a tissue determines the spatial distribution of photochemical reactions. Scattered light is measured as a function of the distance (r) between the axis of the incident beam and the detection spot. Consequently, knowledge of the photosensitizer(Chlorophyll-a) function that characterizes a phantom is measured. To obtain the results of scattering coefficients(${\mu}s$) of a turbid material from diffusion described by experimental approach. It was measured the energy fluency of photon radiation at the position of penetration depth. From fluorescence experimental method obtained the analytical expression for the scattered light as the values of $(I/I_o)_{wavelength}$ vs the distance between the center of the incident beam and optical fiber in terms of the condition of "in situ spectroscopy(optically thick)" and real time by fluorometric measurements. The result was compromised with transport of intensities though a random distribution of scatters.

Angle-Resolved Photoemission Spectroscopy and Raman Spectroscopy Study on the Quasi-free Standing Epitaxial Graphene on the 4H SiC(0001) surface

  • 양광은;박준;박병규;김형도;조은진;황찬용;김원동
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.277-277
    • /
    • 2013
  • The epitaxial graphene on the 4H- or 6H-SiC(0001) surface has been intensively studied due to the possibility of wafer-scale growt. However the existence of interface layer (zero layer graphene) and its influence on the upper graphene layer have been considered as one of the main obstarcles for the industrial application. Among various methods tried to overcome the strong interaction with the substrate through the interface layer, it has been proved that the hydrogen intercalation successfully passivate the Si dangling bond of the substrate and can produce the quasi-free standing epitaxial graphene (QFEG) layers on the siC(0001) surface. In this study, we report the results of the angle-resolved photoemission spectroscopy (ARPES) and Raman spectroscopy for the QFEG layers produced by ex-situ and in-situ hydrogen intercalation.From the ARPES measurement, we confirmed that the Dirac points of QFEG layers exactly coincide with the Fermi level. The band structure of QFEG layer are sustainable upon thermal heating up to 1100 K and robust against the deposition of several metals andmolecular deposition. We also investigated the strain of the QFEG layers by using Raman spectroscopy measurement. From the change of the 2D peak position of graphene Raman spectrum, we found out that unlike the strong compressive strain in the normal epitaxial graphene on the SiC(0001) surface, the strain of the QFEG layer are significantly released and almost similar to that of the mechanically exfoliated graphene on the silicon oxide substrate. These results indicated that various ideas proposed for the ideal free-standing graphene can be tested based on the QFEG graphene layers grown on the SiC(0001) surface.

  • PDF

In Vitro에서 광증감제에 의한 광학적 영향에 관한 연구 (A Study on the Optical Influence by Photosensitizer in Vitro)

  • 김기준;성기천
    • 한국응용과학기술학회지
    • /
    • 제22권2호
    • /
    • pp.182-190
    • /
    • 2005
  • The propagation of light radiation within tissues is an important problem that confronts the dosimetry of therapeutic laser delivery and the development of diagnostic spectroscopy. In the clinical application of photodynamic therapy(PDT) and in photobiology, the photon deposition within a tissue determines the spatial distribution of photochemical reactions. Scattered light is measured as a function of the distance (r) between the axis of the incident beam and the detection spot. Consequently, knowledge of the photosensitizer(Chlorophyll-a) function that characterizes a phantom is important. To obtain the results of scattering coefficients(${\mu}s$) of a turbid material from diffusion described by experimental approach. It was measured the energy fluency of photon radiation at the position of penetration depth. From fluorescence experimental method obtained the analytical expression for the scattered light as the values of $(I\;/I_o)_{wavelength}$ vs the distance between the center of the incident beam and optical fiber in terms of the condition of "in situ spectroscopy(optically thick)" and real time by fluorometric measurements.

Use of In-Situ Optical Emission Spectroscopy for Leak Fault Detection and Classification in Plasma Etching

  • Lee, Ho Jae;Seo, Dong-Sun;May, Gary S.;Hong, Sang Jeen
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제13권4호
    • /
    • pp.395-401
    • /
    • 2013
  • In-situ optical emission spectroscopy (OES) is employed for leak detection in plasma etching system. A misprocessing is reported for significantly reduced silicon etch rate with chlorine gas, and OES is used as a supplementary sensor to analyze the gas phase species that reside in the process chamber. Potential cause of misprocessing reaches to chamber O-ring wear out, MFC leaks, and/or leak at gas delivery line, and experiments are performed to funnel down the potential of the cause. While monitoring the plasma chemistry of the process chamber using OES, the emission trace for nitrogen species is observed at the chlorine gas supply. No trace of nitrogen species is found in other than chlorine gas supply, and we found that the amount of chlorine gas is slightly fluctuating. We successfully found the root cause of the reported misprocessing which may jeopardize the quality of thin film processing. Based on a quantitative analysis of the amount of nitrogen observed in the chamber, we conclude that the source of the leak is the fitting of the chlorine mass flow controller with the amount of around 2-5 sccm.

In Situ Estimation of the Constituents of Green Soybean (Edamame) Pod using Near-Infrared Transmission Spectroscopy

  • Suzuki, Michiru;Katahira, Mitsuhiko;Natsuga, Motoyasu
    • Journal of Biosystems Engineering
    • /
    • 제39권4호
    • /
    • pp.352-356
    • /
    • 2014
  • Purpose: We estimated the dietary qualities of green soybean (edamame) by using a specialized NIR transmission spectrometer to determine the constitutive properties of the soybean, such as the sucrose content and ninhydrine reaction quantity (NRQ; defined by the ninhydrine reaction, which has a high positive correlation with the total free amino acids), with the purpose of establishing a quality assurance system. Methods: We used a newly developed spectrometer probe that enables in situ estimation of the constituents of the soybean. Results: The calibration results obtained using a wavelength range of 760-960 nm were characterized by $R^2$ = 0.57 and standard error of cross-validation (SECV) of 0.78% for sucrose, and $R^2$ = 0.59 and SECV = 0.35% for NRQ. Conclusions: These results are inferior to those of our previous study obtained using a specialized bench-type transmission spectrometer. The poorer results are attributed to several possible reasons, including the effect of direct sunlight and the unstable sample presentation. We plan to conduct further study using improved optical layout and sample presentation.

자연 산화물 분산 촉진에 의한 실 시간 인 도핑 실리콘의 고품질 에피택셜 저온 성장 (High-Quality Epitaxial Low Temperature Growth of In Situ Phosphorus-Doped Si Films by Promotion Dispersion of Native Oxides)

  • 김홍승;심규환;이승윤;이정용;강진영
    • 한국전기전자재료학회논문지
    • /
    • 제13권2호
    • /
    • pp.125-130
    • /
    • 2000
  • Two step growth of reduced pressure chemical vapor eposition has been successfully developed to achieve in-situ phosphorus-doped silicon epilayers, and the characteristic evolution on their microstructures has been investigated using scanning electron microscopy, transmission electron microscopy, and secondary ion mass spectroscopy. The two step growth, which employs heavily in-situ P doped silicon buffer layer grown at low temperature, proposes crucial advantages in manipulating crystal structures of in-situ phosphorus doped silicon. In particular, our experimental results showed that with annealing of the heavily P doped silicon buffer layers, high-quality epitaxial silicon layers grew on it. the heavily doped phosphorus in buffer layers introduces into native oxide and plays an important role in promoting the dispersion of native oxides. Furthermore, the phosphorus doping concentration remains uniform depth distribution in high quality single crystalline Si films obtained by the two step growth.

  • PDF

The Study on the Precursor Adsorption using in-situ Nanoparticle-assisted Attenuated Total Reflectance Infrared Spectroscopy

  • Shin, Jae-Soo;Park, Myung-Su;Jung, Won-Jun;Park, Hee-Jung;Yun, Ju-Young;Kim, TaeWan;Kang, Sang-Woo
    • Applied Science and Convergence Technology
    • /
    • 제24권4호
    • /
    • pp.90-95
    • /
    • 2015
  • The adsorption behavior of tris (dimethylamino)-cyclopentadienyl-zirconium (Cp-Zr) precursor using an in-situ attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FT-IR) was studied. In attempt to improve the detection intensity of an adsorbed precursor, nanoparticles were uniformly distributed on the Ge ATR crystal surface employing the spray method. The absorption characteristics studies were carried out over the Ge crystal temperature in the range of $30{\sim}50^{\circ}C$. Upon increasing the temperature, a reduction of absorption was observed. Based on the peak intensities of ATR-FT-IR spectroscopy, higher-$ZrO_2$ absorption efficiency occurs when the nano-particles are utilized compared to pure Ge crystal.