Effect of ${\gamma}$-Ray Irradiation on Surface Oxidation of Ultra High Molecular Weight Polyethylene/Zirconia Composite Prepared by in situ Ziegler-Natta Polymerization

  • Kwak, Soon-Jong (Polymer Hybrid Research Center, Korea Institute of Science and Technology) ;
  • Noh, Dong-Il (Department of Biomedical Sciences, College of Medicine, Catholic University) ;
  • Chun, Heung-Jae (Institute of Cell and Tissue Engineering, College of Medicine, Catholic University) ;
  • Lim, Youn-Mook (Division of Radiation Application Research, Korea Atomic Energy Research Institute) ;
  • Nho, Young-Chang (Division of Radiation Application Research, Korea Atomic Energy Research Institute) ;
  • Jang, Ju-Woong (Research Institute of Biomedical Engineering, Korea Bone Bank Co. Ltd.) ;
  • Shim, Young-Bock (Research Institute of Biomedical Engineering, Korea Bone Bank Co. Ltd.)
  • Published : 2009.08.25

Abstract

Novel ultra-high molecular weight polyethylene (UHMWPE)/zirconia composites were previously prepared by the in situ polymerization of ethylene using a Ti-based Ziegler-Natta catalyst supported on to the surface of zirconia, as a bearing material for artificial joints. Tribological tests revealed that a uniform dispersion of zirconia in UHMWPE markedly increased the wear resistance. The effects of zirconia content on the oxidation behavior of the ${\gamma}$-ray-treated UHMWPE/zirconia composite surfaces were examined. The oxidation index that estimates the oxidation degree as the content of total carbonyl compounds was monitored using Fourier transform infrared spectroscopy-attenuated total reflectance. The changes in the surface composition due to the oxidation were confirmed by electron spectroscopy for chemical analysis. The extent of oxidation decreased with increasing zirconia content, which was attributed to the increased crystallinity as well as the decreased polymer portion of the UHMWPE/zirconia composites.

Keywords

References

  1. L. Costa, M. P. Luda, L. Trossarelli, E. M. Brach del Prever, M. Crova, and P. Gallinaro, Biomaterials, 19, 659 (1998) https://doi.org/10.1016/S0142-9612(97)00160-9
  2. K. Nakamura, S. Ogata, and Y. Ikada, Biomaterials, 19, 2341(1998) https://doi.org/10.1016/S0142-9612(98)00150-1
  3. M. Goldman, M. Lee, R. Gronsky, and L. Pruitt, J. Biomed. Mater. Res., 37, 43 (1997)
  4. C. S. Lee, J. Y. Jho, K. Choi, and T. W. Hwang, Macromol. Res., 12, 141 (2004) https://doi.org/10.1007/BF03219007
  5. C. S. Lee, S. H. Yoo, J. Y. Jho, K. Choi, and T. W. Hwang, Macromol. Res., 12, 112 (2004) https://doi.org/10.1007/BF03219003
  6. F. Medel, E. Gómez-Barrena, F. García-Alvarez, R. Ríos, L. Gracia-Villa, and J. A. Pu\acute{e}rtolas, Biomaterials, 25, 9 (2004) https://doi.org/10.1016/S0142-9612(03)00464-2
  7. L. Fang, Y. Leng, and P. Gao, Biomaterials, 26, 3471 (2005) https://doi.org/10.1016/j.biomaterials.2004.09.022
  8. Y. H. Jin, H. J. Park, S. S. Im, S. Y. Kwak, and S. J. Kwak, Macromol. Rapid Commun., 23, 135 (2002) https://doi.org/10.1002/1521-3927(20020101)23:2<135::AID-MARC135>3.0.CO;2-T
  9. B. C. Anderson, P. D. Bloom, K. G. Baikerikar, V. V. Sheares, and S. K. Mallapragada, Biomaterials, 23, 1761 (2002) https://doi.org/10.1016/S0142-9612(01)00301-5
  10. D. Saha, P. K. Bose, A. K. Banthia, and S. Dhabal, Int. J. Artif. Organs., 30, 144 (2007) https://doi.org/10.1177/039139880703000209
  11. H. J. Park, S. Y. Kwak, and S. J. Kwak, Macromol. Chem. Phys., 206, 945 (2005) https://doi.org/10.1002/macp.200400350
  12. S. S. Kim, P. H. Kang, Y. C. Nho, and O. B. Yang, J. Appl. Polym. Sci., 97, 103 (2005) https://doi.org/10.1002/app.21734
  13. T. S. Suh, C. K. Joo, Y. C. Kim, M. S. Lee, H. K. Lee, B. Y. Choe, and H. J. Chun, J. Appl. Polym. Sci., 85, 2361 (2002) https://doi.org/10.1002/app.10870
  14. P. Taddei, S. Affatato, C. Fagnano, and A. Toni, Biomacromolecules, 7, 1912 (2006) https://doi.org/10.1021/bm060007u
  15. M. enkiewicz, M. Rauchfleisz, J. Czupryñska, J. Polañski, T. Karasiewicz, and W. Engelgard, Appl. Surf. Sci., 253, 8992 (2007) https://doi.org/10.1016/j.apsusc.2007.05.018
  16. G. Beamson and D. Briggs, High resolution XPS of organic polymers, John Wiley & Sons, Chichester, 1992
  17. A. V. Shaposhnikov, D. V. Gritsenko, I. P. Petrenko, O. P. Pchelyakov, V. A. Gritsenko, S. B. \acute{E}renburg, N. V. Bausk, A. M. Badalyan, Y. V. Shubin, T. P. Smirnova, H. Wong, and C. W. Kim, J. Exp. Theor. Phys., 102, 799 (2006) https://doi.org/10.1134/S1063776106050128
  18. Z. Ma, Z. Mao, and C. Gao, Colloid Surf. B-Biointerfaces, 60, 137 (2007) https://doi.org/10.1016/j.colsurfb.2007.06.019
  19. S. Swaraj, U. Oran, A. Lippitz, R. D. Schulze, J. F. Friedrich, and W. E. S. Unger, Plasma Process. Polym., 2, 310 (2005) https://doi.org/10.1002/ppap.200400070
  20. P. H. Kang and Y. C. Nho, Radiat. Phys. Chem., 60, 79 (2001) https://doi.org/10.1016/S0969-806X(00)00333-9
  21. H. Chtourou, B. Riedl, and B. V. Kokta, J. Colloid Interf. Sci., 158, 96 (1993) https://doi.org/10.1006/jcis.1993.1233
  22. Q. Wu, B. Qu, Y. Xu, and Q. Wu, Polym. Degrad. Stabil., 68, 97 (2000) https://doi.org/10.1016/S0141-3910(99)00171-8
  23. H. S. Choi, T. G. Shikova, V. A. Titov, and V. V. Rybkin, J. Colloid Interf. Sci., 300, 640 (2006) https://doi.org/10.1016/j.jcis.2006.04.001
  24. P. O’Neill, C. Birkinshaw, J. J. Leahy, and R. Barklie, Polym. Degrad. Stabil., 63, 31 (1999)
  25. V. Premnath, W. H. Harris, M. Jasty, and E. W. Merrill, Biomaterials, 17, 1741 (1996) https://doi.org/10.1016/0142-9612(95)00349-5
  26. L. Fang, Y. Leng, and P. Gao, Biomaterials, 27, 3701 (2006) https://doi.org/10.1016/j.biomaterials.2006.02.023