• Title/Summary/Keyword: improved kiln

Search Result 23, Processing Time 0.021 seconds

A Fundamental Study on the Quality Improvement of Lightweight Foamed Concrete with Admixture Types (혼화재료에 의한 경량기포 콘크리트의 품질향상에 관한 기초적 연구)

  • Shin Jae-Kyung;Jeong Kwang-Bok;Lee Youl-Koo;Lee Gun-Cheol;Yoon Gi-Won;Han Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.05a
    • /
    • pp.35-38
    • /
    • 2006
  • This study investigated fundamental properties of lightweight foamed concrete using cement kiln dust (CKD) and both fly ash(FA) and stability agent. Test results showed that concrete incorporating more amounts of admixture decreased slump flow and it caused increase of superplasiticizer in order to secure the fluidity performance. In addition concrete adding stability agent showed stable flow state, resisting segregation of materials and decreasing bleeding capacity. Sinking depth of concrete incorporating 20% of CKD and adding 0.002% of stability agent was indicated at 0mm. For the properties of hardened concrete. compressive strength of concrete incorporating CKD declined due to a lower appearance density, compared with other specimens. The difference of that was not very significant and the value of ail specimen was higher than KS range. Moreover strength of concrete incorporating CKD was even higher at curing temperature $5^{\circ}C$. Tensile strength ratio of concrete incorporating CKD was indicated between 0.50 to 0.59, which is higher value than control concrete. Heat conductivity of concrete incorporating FA was under the KS range while concrete incorporating 20% of CKD was satisfied in KS. Concrete adding stability agent improved insulation performance due to the lower heat conductivity. In conclusion, it is possible that concrete incorporating 20% of CKD and adding 0.002% of stability agent can secure high quality of lightweight foamed concrete.

  • PDF

Characteristic recovery of active carbon waste treated by microwave (Microwave에 의한 정수장 폐활성탄의 복원 특성)

  • Lee, Bum-Suk;Kim, Taik-Nam;Kim, Jong-Ock
    • The Journal of Engineering Research
    • /
    • v.4 no.1
    • /
    • pp.93-107
    • /
    • 2002
  • The active carbon waste which was used in water purification plant was investigated for the improvement of capillary after microwave treatment. The variation of surface area was measured with the various kinds and amounts of active carbon. The water vapor as the activator was verified to improve the capillary but it reacted with the water contained in waste active carbon. In contrast to the water vapor, the $CO_2$ gas improved the surface area about 10-20 % compared to as received one. The best results was observed at the intensity of 2.75 kw microwave. The more effective recovery of active carbon waste was observed at the microwave treatment compared to the rotary kiln treatment. However, the mass production is so difficult in the microwave process.

  • PDF

Effect of Carbon Dioxide-reduced Cement on Properties of Lightweight-foamed Concrete (이산화탄소 저감형 시멘트 함량에 따른 경량기포 콘크리트의 물성평가)

  • Im, Donghyeok;Lee, Won-Ki
    • Journal of Environmental Science International
    • /
    • v.29 no.6
    • /
    • pp.605-612
    • /
    • 2020
  • To improve the initial strength and stability of lightweight-foamed concrete, which shows suitable sound absorption and insulation characteristics, the effect of CO2-reduced cement on the properties of the concrete was investigated. Various mixing ratios were applied by substituting a certain amount of slag and Calcium Sulfo Aluminate (CSA) in CO2-reduced Ordinary Portland Cement (OPC) and the physical properties of the samples were examined using the Korean Standard. The kiln temperatures of the CSA were 100-200℃ ; these values are lower than those of OPC and can lead to energy saving. In addition, the low limestone content reduces greenhouse gas emissions by 20 %. Adding a small amount of CSA in OPC content activates Ca-Al-H2-based hydrates, and the initial compressive strength of the concrete is improved. As the CSA content increased, the thermal conductivity of the concrete decreased by up to 8% compared to plain concrete, thus indicating an improvement in its insulation. Therefore, the settlement stability was improved as the addition of CSA shortened the setting time.

Measurement of High Temperature Dielectric Property at Microwave Frequency Using Cavity Perturbation Method (Cavity Perturbation Method를 이용한 마이크로파 주파수대의 고온 유전특성 측정 연구)

  • Kim, Dong-Eun;Jung, Jin-Ho;Lee, Sung-Min;Kim, Hyung-Tae
    • Journal of Powder Materials
    • /
    • v.13 no.6 s.59
    • /
    • pp.455-461
    • /
    • 2006
  • High temperature dielectric constants of the various ceramic materials have been measured using cavity perturbation method. The measurements were applied to refractory, traditional and fine ceramic powder compacts from room temperature to $1200^{\circ}C$. Calibration constant in the equation suggested by Hutcheon et al., was determined from the dielectric constants of reference specimen (teflon and alumina) at room temperature. From these results, informations on the refectory materials were obtained for the microwave kiln design and understanding of the microwave heating effects of ceramics have been improved.

Improvement of Physical and Drying Properties of Large Diameter and Long Axis Moso Bamboo (Phyllostachys pubescens) Poles Using Heat Treatment

  • Kyoung-Jung KIM;Young-Jin KIM;Se-Yeong PARK
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.6
    • /
    • pp.447-447
    • /
    • 2023
  • This study aimed to convert underutilized moso bamboo into high-value added products such as fences, interior materials, lighting fixtures, and accessories. Green moso bamboo poles with a diameter of approximately 10 cm and a length of approximately 3.7 m were heat treated at 140℃ using a large-scale kiln. The processing time was meticulously adjusted through various stages, including pretreatment (6-8 hours at 60℃), cooking (8-10 hours at 100℃), steaming (26-30 hours at 120℃), heating (4-6 hours at 140℃), and finally, cooling (below 80℃). A meticulously designed heat treatment process has enabled efficient mass production of moso bamboo poles with improved qualities, including minimal splitting, moisture levels below 3%, and a specific gravity of 1.05. The focus of this study was to present the physical and drying properties, such as color, dimensional change, specific gravity, moisture content, and splitting, observed during the heat treatment process.

Experimental studies and numerical analysis of the shear behavior of fin plates to tubular columns at ambient and elevated temperatures

  • Jones, M.H.;Wang, Y.C.
    • Steel and Composite Structures
    • /
    • v.8 no.3
    • /
    • pp.179-200
    • /
    • 2008
  • This paper reports the results of a recent experimental study into the behavior of welded fin-plate connections to both hollow and concrete filled tubular (CFT) columns under shear. Experiments have been performed at both ambient and elevated temperatures with the aid of an electric kiln. The observed failure modes include fracture of the fin plate and tearing out of the tube around the welds. By considering the results of previously published research, the current design method for similar connections under purely tensile load, in CIDECT Guide 9, based on a deformation limit of 3% of the tube width is shown to be inadequate when evaluating the ultimate strength of such connections. By comparing the results from the current test program which failed in the fin-plate with Eurocode guidance for failure of a fin-plate alone under shear and bending load it is shown that the column face influences the overall connection strength regardless of failure mode. Concrete in-fill is observed to significantly increase the strength of connections over empty specimens, and circular column specimens were observed to exhibit greater strength than similarly proportioned square columns. A finite element (F.E.) model, developed using ABAQUS, is presented and validated against the experimental results in order that extensive parametric tests may be subsequently performed. When validating the model against elevated temperature tests it was found that using reduction factors suggested in published research for the specific steel grades improved results over applying the generic Eurocode elevated temperature steel strength reduction factors.

Effect of the Physical Property of Insulator on the Slurry Stability (슬러리의 안정화가 애자의 물리적 특성에 미치는 영향)

  • 안용호;최연규;송병기;한병성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.12
    • /
    • pp.979-986
    • /
    • 2001
  • This paper was researched the effect of slurry stability on the mechanical and electrical property of the porcelain insulator with various raw materials such as feldspar, quartz, clay and l7wt% alumina. The slurry was fabricated after ball milling the mixed raw materials. Green compacts were made by the extrusion and were sintered at 1300$\^{C}$ for 60min in the tunnel kiln. All of the specimens were densified 96% of the theoretical density. The 3-point flexural strength($\sigma$$\_$B/) of the specimen stabilized slurry pH 7.8 was 1650 k9/㎠ and the vickers hardness(Hv) and the fracture toughness(K$\_$IC/) were 27.5 GPa and 2.2 MPa$.$m$\^$$\sfrac{1}{2}$/, respectively. The mechanical properties of the specimen stabilized slurry PH 9.3 were 1716 kg/㎠($\sigma$$\_$B/), 27.6 GPa(Hv) and 3.0 MPa$.$m$\^$$\sfrac{1}{2}$/(K$\_$IC/), respectively. The dielectric strength was increased from 8.3kV/mm to 13.2kV/mm as the increase of the slurry pH from 7.8 to 9.3. Therefore the physical properties of the specimen stabilized slurry pH 9.3 were improved.

  • PDF

The Paddling and Round Pots (타날문단경호(打捺文短頸壺)의 연구(硏究))

  • Seong-Ju, Lee
    • Korean Journal of Heritage: History & Science
    • /
    • v.33
    • /
    • pp.4-35
    • /
    • 2000
  • The paddling technique is a Kind of secondary treatments in the process of ceramic forming, which appeared in the Chinese Neolithic Age pottery making. In the case of Korean prehistoric pottery making, it was first introduced together with the kiln firing method from Tongpei region(東北地方) of China in Yan(燕) dynasty occupation period. Korean archaeologists have recognized the adoption of the new technologies as a drastic innovation of ceramic production. And most of them have thought that the diffusion of new techniques, accompanied by the migration of the northern ethnic groups, had been immediately followed by the innovative changes in pottery procdution. However, rejecting the arguments from the simple diffusionist viewpoint, I have first tried to describe the innovation processes in the ceramic production systems as a spatio-temporal process. The paddling technique by the cord-wound paddle, which was first introduced among the various paddles, was associated with the new sort of pottery, round pots fired in low temperature of reducing atmosphere condition. The cord-marked round pots first tried by the indigenous potters in the southern part of Korean were characterized by the relatively low leveled techniques in forming and firing, compared to those of north-east China. The techniques of the round pots were hardly improved in the domestic production system until the appearance of the fully-specialized one. The specialized production system of the round pot, which appeared first in the mid-western region of Korea, showed the diversified paddling techniques and made the noticeable improvements in forming and firing processes.

Effect of Moisture Content and Wood Structure on the Amenability of Japanese Red Pine (Pinus densiflora S. et Z.) to Liquid Treatment

  • Ali Ahmed, Sheikh;Chong, Song-Ho;Hong, Seung-Hyun;Kim, Ae-Ju;Chun, Su-Kyoung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.2
    • /
    • pp.108-116
    • /
    • 2010
  • This paper explains the effects of wood drying on treatability (as determined by water uptake) of Japanese red pine (Pinus densiflora S. et Z.) at the sevenmoisture content (MC) levels above and below the fiber saturation point (FSP). According to the experimental results, it was found that water uptake (as the percentage of void volume filledwith distilled water, VVF%) was influenced by level of moisture content and percentage of void volume filled was improved effectively by kiln drying process. A significant relationship between moisture content and treatability was established. Permeability and liquid uptake were decreased above the FSP due to the effect of the less void space available in wood. Even though increased liquid uptake was observed at lower moisture content, no significant differences was observed moisture content below 20%. Therefore, this species need to be initially dried below FSP before treated with liquids. But drying moisture content below 10% might not be economical for the commercial purpose comparing drying the wood between 10 and 20% moisture content. The result of this study inferred that the treatability of pine wood can be improved by reducing the moisture content up to a certain level of 10~20% for allowing better performance.

Characterizations of High Early-Strength Type Shrinkage Reducing Cement and Calcium Sulfo-aluminate by Using Industrial Wastes

  • Lee, Keon-Ho;Nam, Seong-Young;Min, Seung-Eui;Lee, Hyoung-Woo;Han, Choon;Ahn, Ji-Whan
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.2
    • /
    • pp.215-221
    • /
    • 2016
  • In this study, the utilization of the by-products of various industries was examined using raw materials of CSA high-functional cement such as coal bottom ash, red mud, phosphate gypsum, etc. Technology to improve energy efficiency and reduce $CO_2$ was developed as part of the manufacturing process; this technology included lower temperature sintering ($150{\sim}200^{\circ}C$) than is used in the OPC cement manufacturing process, replacement of CSA cement with the main raw material bauxite, and a determination of the optimum mix condition. In order to develop CSA cement, a manufacturing system was established in the Danyang plant of the HANIL Cement Co. Ltd., in Korea. About 4,200 tons of low purity expansion agent CSA cement (about 16%) and about 850 tons of the lime-based expansion agent dead burned lime (about 8%) were produced at a rate of 60 tons per hour at the HANIL Cement rotary kiln. To improve the OPC cement properties, samples of 10%, 13%, and 16% of CSA cement were mixed with the OPC cement and the compressive strength and length variation rate of the green cement were examined. When green cement was mixed with each ratio of CSA cement and OPC cement, the compressive strength was improved by about 30% and the expansibility of the green cement was also improved. When green cement was mixed with 16% of CSA cement, the compressive strength was excellent compared with that of OPC cement. Therefore, this study indicates the possibility of a practical use of low-cost CSA cement employing industrial wastes only.