• 제목/요약/키워드: implicit Lagrangian

검색결과 54건 처리시간 0.022초

페트로프-갤러킨 자연요소법을 이용한 비선형 동해석 (Nonlinear Dynamic Analysis using Petrov-Galerkin Natural Element Method)

  • 이홍우;조진래
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.474-479
    • /
    • 2004
  • According to our previous study, it is confirmed that the Petrov-Galerkin natural element method (PGNEM) completely resolves the numerical integration inaccuracy in the conventional Bubnov-Galerkin natural element method (BG-NEM). This paper is an extension of PG-NEM to two-dimensional nonlinear dynamic problem. For the analysis, a constant average acceleration method and a linearized total Lagrangian formulation is introduced with the PG-NEM. At every time step, the grid points are updated and the shape functions are reproduced from the relocated nodal distribution. This process enables the PG-NEM to provide more accurate and robust approximations. The representative numerical experiments performed by the test Fortran program, and the numerical results confirmed that the PG-NEM effectively and accurately approximates the nonlinear dynamic problem.

  • PDF

레벨 셋 기법을 이용한 에너지 흐름 문제의 형상 최적화 (Shape Optimization of Energy Flow Problems Using Level Set Method)

  • Seung-Hyun, Ha;Seonho, Cho
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 가을 학술발표회 논문집
    • /
    • pp.411-418
    • /
    • 2004
  • Using a level set method we develop a shape optimization method applied to energy flow problems in steady state. The boundaries are implicitly represented by the level set function obtainable from the 'Hamilton-Jacobi type' equation with the 'Up-wind scheme.' The developed method defines a Lagrangian function for the constrained optimization. It minimizes a generalized compliance, satisfying the constraint of allowable volume through the variations of implicit boundary. During the optimization, the boundary velocity to integrate the Hamilton-Jacobi equation is obtained from the optimality condition for the Lagrangian function. Compared with the established topology optimization method, the developed one has no numerical instability such as checkerboard problems and easy representation of topological shape variations.

  • PDF

미세입자분산 액적의 고체면에서 모세퍼짐 현상에 관한 직접수치해석 기법개발 (DEVELOPMENT OF A NUMERICAL TECHNIQUE FOR CAPILLARY SPREADING OF A DROPLET CONTAINING PARTICLES ON THE SOLID SUBSTRATE)

  • 황욱렬;정현준;김시조;김종엽
    • 한국전산유체공학회지
    • /
    • 제12권4호
    • /
    • pp.14-19
    • /
    • 2007
  • We present a direct numerical simulation technique and some preliminary results of the capillary spreading of a droplet containing particles on the solid substrate. We used the level-set method with the continuous surface stress for description of droplet spreading with interfacial tension and employed the discontinuous Galerkin method for the stabilization of the interface advection equation. The distributed Lagrangian-multipliers method has been combined for the implicit treatment of rigid particles. We investigated the droplet spreading by the capillary force and discussed effects of the presence of particles on the spreading behavior. It has been observed that a particulate drop spreads less than the pure liquid drop. The amount of spread of a particulate drop has been found smaller than that of the liquid with effectively the same viscosity as the particulate drop.

Seismic response analysis of an oil storage tank using Lagrangian fluid elements

  • Nagashima, Toshio;Tsukuda, Takenari
    • Coupled systems mechanics
    • /
    • 제2권4호
    • /
    • pp.389-410
    • /
    • 2013
  • Three-dimensional Lagrangian fluid finite element is applied to seismic response analysis of an oil storage tank with a floating roof. The fluid element utilized in the present analysis is formulated based on the displacement finite element method considering only volumetric elasticity and its element stiffness matrix is derived by using one-point integration method in order to avoid volumetric locking. The method usually adds a rotational penalty stiffness to satisfy the irrotational condition for fluid motion and modifies element mass matrices through the projected mass method to suppress spurious hourglass-mode appeared in compensation for one-point integration. In the fluid element utilized in the present paper, a small hourglass stiffness is employed. The fluid and structure domains for the objective oil storage tank are modeled by eight-node solid elements and four-node shell elements, respectively, and the transient response of the floating roof structure or the free surface are evaluated by implicit direct time integration method. The results of seismic response analyses are compared with those by other method and the validation of the present analysis using three-dimensional Lagrangian fluid finite elements is shown.

내재적 경계 조건을 이용한 자유표면 유동 수치해석 (Numerical Simulation on the Free Surface using implicit boundary condition)

  • 이공희;백제현
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1998년도 춘계 학술대회논문집
    • /
    • pp.156-161
    • /
    • 1998
  • This describes a numerical method for predicting the incompressible unsteady laminar three-dimensional flows of fluid behaviour with free-surface. The elliptic differential equations governing the flows have been linearized by means of finite-difference approximations, and the resulting equations have been solved via a fully-implicit iterative method. The free-surface is defined by the motion of a set of marker particles and interface behaviour was investigated by way of a 'Lagrangian' technique. Using the GALA concept of Spalding, the conventional mass continuity equation is modified to form a volumetric or bulk-continuity equation. The use of this bulk-continuity relation allows the hydrodynamic variables to be computed over the entire flow domain including both liquid and gas regions. Thus, the free-surface boundary conditions are imposed implicitly and the problem formulation is greatly simplified. The numerical procedure is validated by comparing the predicted results of a periodic standing waves problems with analytic solutions or experimental results from the literature. The results show that this numerical method produces accurate and physically realistic predictions of three-dimensional free-surface flows.

  • PDF

Numerical Investigation of Hemodynamics in a Bileaflet Mechanical Heart Valve using an Implicit FSI Based on the ALE Approach

  • Hong, Tae-Hyub;Choi, Choeng-Ryul;Kim, Chang-Nyung
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2410-2414
    • /
    • 2008
  • Human heart valves diseased by congenital heart defects, rheumatic fever, bacterial infection, cancer may cause stenosis or insufficiency in the valves. Treatment may be with medication but often involves valve repair or replacement (insertion of an artificial heart valve). Bileaflet mechanical heart valves (BMHVs) are widely implanted to replace the diseased heart valves, but still suffer from complications such as hemolysis, platelet activation, tissue overgrowth and device failure. These complications are closely related to both flow characteristics through the valves and leaflet dynamics. In this study, the physiological flow interacting with the moving leaflets in a bileaflet mechanical heart valve (BMHV) is simulated with a strongly coupled implicit fluid-structure interaction (FSI) method which is newly organized based on the Arbitrary-Lagrangian-Eulerian (ALE) approach and the dynamic mesh method (remeshing) in FLUENT. The simulated results are in good agreement with previous experimental studies. This study shows the applicability of the present FSI model to the complicated physics interacting between fluid flow and moving boundary.

  • PDF

A Study for Scheduling Jobs on Unrelated Parallel Processors

  • Kang, Suk-Ho;Park, Sung-Soo
    • 한국국방경영분석학회지
    • /
    • 제9권1호
    • /
    • pp.51-61
    • /
    • 1983
  • Lagrangian relaxation is used to the problem of scheduling jobs on unrelated parallel processors with the objective of minimizing makespan. The implicit condition for optimality is drawn out explicitly in order to apply the subgradient algorithm. To obtain the optimal solution, branch-and-bound-search method is devised. In the search, the special structure of the problem is exploited effectively, Some computational experiences with the algorithm are presented, and comparisons are made with the Land and Doig method.

  • PDF

아크 용접 공정의 3차원 병렬처리 유한 요소 해석 (Three dimensional finite element analysis of art-welding processor via parallel compuating)

  • 임세영;김주완;김현규;조영삼
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 춘계학술발표대회 개요집
    • /
    • pp.161-163
    • /
    • 2002
  • An implicit finite element implementation for Leblond's transformation plasticity constitutive equations, which are widely used in welded steel structure is proposed in the framework of parallel computing. The implementation is based upon the updated Lagrangian formulation. We examine the efficiency of parallel compuatation for the finite element analysis of a welded structure using multi-frontal solver.

  • PDF

변태 소성을 고려한 용접 구조물의 유한 요소 해석 (Finite Element Analysis considering transformation plasticity for a welded structure)

  • 김주완;임세영
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2001년도 추계학술발표대회 개요집
    • /
    • pp.116-118
    • /
    • 2001
  • We propose an implicit numerical implementation for Leblond's transformation plasticity constitutive equations , which are widely used in welded steel structure. We apply Euler backward scheme rule to integrate the equations and determine the consistent tangent modulus. The implementation may be used with updated Lagrangian formulation. we test a simple butt-welding process to compare with SYSWELD and discuss the accuracy.

  • PDF

받음각을 갖는 평판의 유체 충격 시뮬레이션 (Numerical Simulation for Fluid Impact Loads by Flat Plate with Incident Angles)

  • 이병혁;정성준;류민철;김용수;박종천
    • 대한조선학회논문집
    • /
    • 제45권1호
    • /
    • pp.1-9
    • /
    • 2008
  • The free-surface motions interacting with structures are investigated numerically using the Moving Particle Semi-implicit (MPS) method proposed by Koshizuka et al. (1996) for solving incompressible flow. In the method, Lagrangian moving particles are used instead of Eulerian approach using grid system. Therefore the terms of time derivatives in Navier-Stokes equation can be directly calculated without any numerical diffusion or instabilities due to the fully Lagrangian treatment of fluid particles and topological failure never occur. The MPS method is applied to the numerical study on the fluid impact loads for wet-drop tests in a LNG tank, and the results are compared with experimental ones.