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Abstract

Lagrangian relaxation is used to the problem of scheduling jobs on unrelated
parallel processors with the objective of minimizing makespan. The implicit condition
for optimality is drawn out explicitly in order to apply the subgradient algorithm.

To obtain the optimal solution, branch-and-bound-search method is devised. In the
search, the special structure of the problem is exploited effectively.

Some computational experiences with the algorithm are presented, and compari-
sons are made with the Land and Doig method.

1. Introduction

This paper is concerned with the scheduling of jobs on unrelated parallel processors with the
objective of minimizing makespan. Parallel processor scheduling problem is to schedule n = 2 single
operation jobs on m-=2 Processors.

It is assumed here that jobs are initially available, non-preemptive, and precedence constraints are
not existing.

Above problems can be classified according to the processor type. Identical processors imply
that processing time for a job is identical on any processor. Proportional processors imply that job
processing time is proportional to the processor speed. In unrelated processors, job processing
time depends on particular joB and processor involved.

In this paper, only unrelated processors are considered. If preemption is not allowed, the parallel
processor scheduling problem is NP-complete [9]. And it is unlikely to obtain a polynomial time
algorithm. Recent studies have focussed on developing performance-guaranteed heuristic algorithms.
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But there has been little work for unrelated processor case, and furthermore the performance of
the heuristic algorithms developed is not good. The heuristics developed by Ibarra and Kim [16]
have worst-case bound m, which is equal to the number of processors.

In addition to the poor performance of the heuristic algorithms, there has not been any appli-
cable exact algorithms except two-processor case.

Though the problem can be formulated as a zero-one mixed integer program, integer program-
ming approach has not been reported. In this paper, integer programming approach is intended.
Instead of solving the problem with the existing integer programming algorithm, branch-and-bound-
search algorithm is developed, using Lagrangian relaxation and subgradient algorithm.

Unrelated processor problem is more general model than that of identical or proportional
processor. But the algorithm developed here cannot be applied successfully to identical or propor-
tional processor case. Lagrangian relaxation is taken in this algorithm, but it is insufficient to obtain
a good solution for identical and proportional processors. Though Lagrangian relaxation has been
used extensively in a variety of problems, the model considered here is somewhat different from
usual cost-minimization model. When Lagrangian relaxation is taken, there exists unconstrained
variable. Therefore the subgradient algorithm cannot be used directly, because the subgradient
becomes unbounded. To avoid such a situation, implicit necessary condition for optimality is stated
explicitly so that the subgradient can be defined. But the solution obtained by using subgradient
algorithm is not necessarily optimal. So branch-and-bound-search method is used to obtain an
optimal solution. The decomposable structure of the problem is utilized, which makes the search
procedure more efficient. Computer memory requirements of the algorithm are very small, since
relaxed problem becomes pure zero-one integer program, search method similar to additive algorithm
of Balas [2] can be used. It is necessary only to keep the data of job processing time and table of
problem state.

To test the algorithm, limited number of problems were solved with the algorithm, and the
same problems were solved with the Land and Doig algorithm for comparison. The results are given

in section 5.

2. Related Research

For identical processor problem, LPT(Largest Processing Time) algorithm and application of
Bin Packing algorithm [4] were developed as performance-guaranteed heuristic algorithms.

Sahni [20] developed exact algorithm based on dynamic programming, but no computational
results were reported.

Sahni also gave e-approximate algorithm based on dynamic programming and rounding techni-
que.

Gonzalez et al. [11] and Horowitz and Sahni [15] developed heuristics for proportional
processor problem. Horowitz and Sahni also developed dynamic programming algorithm, but with
no computational results.

For unrelated processor problem, Horowitz and Sahni [15] gave exact dynamic programming
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algorithm, Ibarra and Kim [16] developed heuristics with worst<ase bound m (number of pro-
cessors). Ibarra and Kim also developed heuristics for unrelated two-processor problem with worst-
case bound (/5 + 1)/2, but they couldn’t extend the idea to m = 3 processors.

For two-processor case, Bulfin and Parker [3] converted the problem into two knapsack
problems, and solved it with existing knapsack algorithm.

3. Lagrangian Relaxation and Subgradient Algorithm

The integer programming formulation of minimizing makespan on identical parallel processors
was introduced by Baker [1]. Slight modification of the formulation can be used for an unrelated
processor case.

The formulation, called original problem, is:

minimize y
n

subject to Yy — 2 t%; 20 =1, ..,m 1)
il
Jm
Zx =1 =l,..,n 2
i=1

y20, x; = Oor 1 forallij

The meaning of the variable is.

m ; number of processors.

n ; number of jobs

y ; makespan

t; 5 processing time of job j on processor i

xi ; 1ifjobj isallocated to processor i, otherwise 0

In original problem, constraints (1) make the problem difficult to solve. So relax constraints
(1) using Lagrangian relaxation. Let u be the Lagrangian vector and u; the Lagrangian multiplier
corresponding to the i-th constraint in (1).
Then, the relaxed Lagrangian becomes.

m
.minimize {u,y x) =y — 2y (y— f) ti%5)
i=1 Fl
m
subject to : Zx=Lj=1.,n
=1

y =0, u>0, xij=00r1foraili,j

In the relaxed problem, there is not variable y in the constraints. For the problem is in a minimi-

. . m m
zation form, if 1 - u; >0,yis0,if 1 — £ y; <0,y is unbounded.
=1 i=1
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Variable y takes a finite positive value in any feasible solution. To satisfy this requirement

the necessary condition for optimality should be 1 — Z u; = 0. If implicit condition 1 — 2 uj
i=1

= 0 is satisfied, variable y disappears from the relaxed problem But y can be determined from

the solution in the relaxed problem. Assume E u; = 1 holds, take y to be anything and solve the
, i=1
following relaxed problem.

L(u) = minimize L(u x)

= E 2 uj tjjX;
FlFl

subject to Zxz=1,j=1,...,n

Xjj=0or 1 forali,j

The relaxed problem is decomposed into n independent subproblems, and each subproblem
has a simple multiple-choice constraint.

So the solution can be easily obtained, select one variable which has a smallest objective function
coefficient in the subproblem.

Let X be the solution obtained from above, and L(u) be the objective function value given u.
They y can be determined from X, and L(u) becomes lower bound of the original problem. Ideal

Lagrangian vector u is an optimal solution of the problem

maximize L(uw)
. m
subject to Ty =1
=1

y; 20,i=1,..,m

To obtain a good Lagrange multiplier vector, subgradient algorithm is used.

In the relaxed problem, the multiple choice constraints is totally unimodular. Geoffrion [10]
showed that if the constraints matrix of the relaxed problem is totally unimodular, the solution
value produced by Lagrangian relaxation is equal to the solution value produced by linear program-
ming relaxation. This equality means that unless the subgradient algorithm converges to the optimal
solution, the Lagrangian relaxation bound will not be as good as the linear programming relaxation
bound. Since the Lagrangian relaxation bound is used as a lower bound during the branch-and-
bound-search procedure, no attempt is made to achieve actual convergence. But computational
experience has indicated that fairly good value could be obtained with small computational effort,
which validate the use of Lagrangian relaxation and subgradient algorithm. From the solution
obtained from the relaxed problem, the finish time on each processor can be determined.

Let v(i) be the finish time at processor i given fixed u, and v be the vector of v(i). Then, the

relaxed problem can be written as
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maximize L(u)
L(u) = min { u*vy;k=1,...K}
subject to .‘Znilui =1, y; 20,i=1,...,m
=
Here vy is one of the possible assignments, and K is vast number representing number of all possible
assignments, and u-vy denotes innerproducts. For the problem that has above form, the subgradient
algorithm can be used [5]. .
Starting with an initial Lagrangian vector u®, the subgradient algorithm obtains u®, u', u?, ... which
converges asymptotically to an optimum solution.

Given u, the next Lagrangian vector can be obtained from

ultl =y + tjv(uj),j=0.1,

Here t; is positive scalar, called step size, v(uj) is a subgradient vector given .

t; is given as,

L — L(u})

s = A - s e<)\g2
PO v !

The best solution obtained in a candidate problem is taken as L. The candidate problem is
one that obtained in the search procedure. For the value A, a good rule is to start with A, = 2.
If no improvement of L(u¥) occurs in the last d steps, then A is halved [8]. When the subgradient
algorithm is applied, the Lagrangian vector must satisfy the condition gl up=1.

To satisfy this constraint, a projection operator Pg is used as in [14]. To say,
ul! = Pg (W +t; v(u))), S € E"

Where Pg is the operator projecting E® onto $, that is, for any ueE", the point Pg(u) is the
unique point of S nearest u.
m
The constraint _El u; = 1 constitute convex set, so the projection operator can be used. Given

F
some U, we must find u, minimizing |u — T2, and satisfying £ u; = 1. u is the solution of the
1
following quadratic programming problem,

1 m
min{—z—lu—ulz; Suy =1, all y=>0,i=1,..m)}
i=1

Kuhn-Tucker necessary and sufficient condition of the above problem can be written as the
following linear complementary problem.

ui-—ﬁi=vi—)\, ViZO,UiVi=0fOI all i

Complementary pivoting algorithm can be used to solve the above problem, but the method
used in [14] is adopted for the simple structure of the problem. Followings are taken from [14].
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If we set y;(A) = max (T; — X, 0), vj(A) = max { — (G; — A), O} then, the Kuhn-Tucker conditions
m
are satisfied. So it is only necessary to find A* of A for which 21 y (A)=1.
F
Suppose the coordinate of Tis ordered T; <, ... <Up,.
m
The “break-point” value of between, and outside of, which Zi u;(A) is linear, are U, , U, ...
=
T, and its value for A =Ty (1 =1,2, ..., n) is ‘rZTI)lﬂ(ﬁi — Tp). Since g: Ti(A*) = 1 for any Uy <A\*,
E F
u\*)=0and 2 (@ — ) > 1.
EH1
Thus ug(A*) =0 for [ =12, ..., I, where

ﬁl+1 + e +‘_alm - 1

Ilp=max {1I; > 1)

n—

If I cannot be determined from above, then I is 0.

m
A* is obtained from £ W)= T (T — )= 1, ie.
Hgtl i=ly+1

m
-1+ 2 G
A* = Flgtl

ﬂ—IO

The obtained Lagrangian vector before the projection operator is used denotes the direction
where the objective value can be increased. But, the obtained point is not on the hyperplane ;an u;
= |. The projection operator Pg takes the role to project the point on the hyperplane.

If the finish time on every processor is identical, the obtained subgradient vector is orthogonal
to the hyperplane, and wi*! = W for any j. This is the case where an optimal solution is obtained.
If the finish time is different, the objective value can be increased by taking relatively larger Lagran-
gian multiplier value to the constraint(processor) having the larger finish time. At that time, the
subgradient vector is inclined to the direction where the objective value can be increased.

The projection operator projects the obtained point to the hyperplane which constitutes the
necessary condition for optimality.

As the subgradient algorithm is to increase the objective value of the relaxed problem, the
objective value(makespan) of the original problem decreases through the reassignment of jobs.
In unrelated processor problem, the reassignment of jobs occurs rather separately according to the
Lagrangian vector u.

But, in identical and proportional processor problem, all jobs are assigned to one processor in
each iteration of the subgradient algorithm, which prohibits the use of Lagrangian relaxation.

At the next section, branch-and-bound-search method is used to obtain an optimal solution,
but without search, the subgradient algorithm alone can be used to obtain an approximate solution

and lower bound.

4. Branch-and-bound-search

The solution obtained by applying the subgradient algorithm is not necessarily optimal. There
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generally exists duality gaps. So branch-and-bound-search method is used to obtain optimal solution.

This method is analogous to the search method developed by Balas [2]. Original problem is
a zero-one mixed integer program, and nowadays little work has been done on applying search
method to the zero-one mixed integer program. The relaxed problem becomes pure zero-one integer
program, which enables the use of search method. This greatly save the computer memory require-
ments.

The relaxed problem is decomposed into n independent subproblem, and this characteristics
can be utilized effectively in the search.

The search procedure can be depicted as a tree composed of nodes and branches. A node cor-
responds to a zero-one value of x, a branch joins two nodes. The two nodes differ in the state of
one variable.

A variable can be in one of three states: fixed at 1, fixed at O, or free. When a forward step
is taken, a variable is fixed at 1, after a backward step a variable is fixed at 0. The search terminates
when all the variables are fixed at 0. Now define the level of a node as the number of variables
fixed at 1. The point xl is the node x with / variables fixed at 1. For the relaxed problem, the level
does not exceed n, because the problem is decomposed into n subproblems, and each subproblem
needs only one variable to be fixed at 1.

The search method takes the following basic procedure [21].

1) Fix a free variable x; from X! (initially X = x°) at value 1

2) Resolve the problem in the remaining free variables; then

3) Fix xy at value O (or cancel x at level I);and

4) Repeat this process for the problem with x, fixed at 0

The problem with some variables fixed at 0 or 1 forms a candidate problem in the branch-bound-
search procedure, and the formulation is rectified according to the variable state.

For the candidate problem is formulated directly from the original problem, there is not a
cumulative computational error, which can hazard the performance of the algorithm based on linear
programming relaxation.

Backward step is taken when 1) there are no free variables remained 2) for the candidate problem
considered, the lower bound obtained is greater than or equal to the current best solution, i.e. current
incumbent 3) the candidate problem is fathomed.

When the job processing time is integer, the lower bound can be taken as | L(u) i, (smallest integer
greater than or equal to L(u)), thus fathoming is occurred when [L(u) T equals solution value of
candidate problem.

In the relaxed problem, the objective function coefficient becomes rank order solution value
when the corresponding variable becomes 1. Let the current incumbent be CI and lower bound of
a candidate problem LB. Define A =CI —- LB, and §;; = 1 —tyj,1 # k, where t;; denotes the objective
function eoefficient of x;; in the relaxed problem, and Tkj denotes minimum objective function
coefficient in the subproblem, i.e. best rank order solution.

If 8;; > A, then x;; éan be fixed at 0, or cancelled at the current level. If such a variable becomes
1 at the current level, the lower bound will exceed the current incumbent. This characteristic lessens
the effort to examine the unpromising nodes.
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To select the branching variable at the forward step, heuristic selection criterion is used. Among
the best rank order solutions in each subproblem, the one with the largest value is taken as branching
variable. Such a selection criterion will increase the lower bound quickly in low level, thus many
variables can be fixed at 0. )

Because the relaxed problem is decomposed into independent subproblems, backward step
can be taken when only the variables in one subproblem are fixed at 0. To exploit this nature,
some modifications are made in the selection of branching variable.

If forward step is to occur after a backward step, the branching variable is selected in the sub-
problem where backward step was taken.

Thus it is necessary only to examine one subproblem at any level. If backward step was not
occurred before the forward step, branching variable is selected from any subproblem by the rule
stated before.

The best Lagrangian vector obtained at any level is kept for later use as an initial Lagrangian
vector. If forward step is occurred, the Lagrangian vector obtained from previous level is used as an
initial Lagrangian vector. If backward step is occurred, the Lagrangian vector kept previously at
the same level is used. This can be a good initial Lagrangian vector because only one variable is
different in state. It is necessary only to keep the problem data and table of problem state, so the
memory requirements are small.

If it is sufficient to obtain practically good solution, an error tolerance can be used .as fathoming
criterion. If the difference of obtained solution and lower bound is within a % of lower bound,
the candidate problem can be fathomed. Then, obtained solution is at least within a % of the optimal
solution, and this may lessen the computational effort. ‘Such a criterion cannot be used when lower

bound is obtained by linear programming relaxation.

5. Computational Experience

The algorithm was coded in FORTRAN, and tested for limited number of problems. For com-
parison, branch-and-bound method developed by Land and Doig was used. The program was written
by R. Shareshian in IBM Corporation. To store the tableau in the branching procedure, core
memory was used.

It may be inadequate to compare the search method with the Land and Doig method which is
not specifically designed for a zero-one mixed integer program. If more efficient algorithm, for
example DKW algorithm [6] will be used, computation time may be reduced. But the memory
requirements do not decrease. Memory requirements for the test problems were about 1 MB for the
Land and Doig method, but it takes only 3 KB for the search method.

This may validate the use of the search method if limited resources are available, furthermore
feasible solution is obtained at any time.

Runs were made on IBM 370-125, and the results are given in Table 1. Problem data were

taken from uniform random integers between 100 and 1000.
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Table 1. Computational Results for Test Problems

Optimal Land and Doig Methodﬂ Search Method
No. of | No.of | Problem | g ) ™} iy i _ lcPU Time| No. of | APPFOX. S0l
Proc. Jobs | Number Val (sec) Iteration (séc) Search without Search
alue se¢ (relative error)
1 7781 52 51 14 44 | 8171 (5.0%)
2 40
2 7752 50 53 13 43 | 7752 ( 0%)
3 5205 1319 879 376 4296 | 5321 (2.2%)
3 40
4 3848 750 516 238 2373 | 4022 (4.5%)
5 2334 1566 1664 341 2239 | 2474 (6.0%)
4 30 -
6 2295 6935% - 1269 9158 | 2453 (6.9%)
5 20 7 1229 346 640 146 664 | 1229 (0%)

In the table, iteration of Land and Doig method means the number of dual simplex iteration.
For search method, number of search means the number of nodes where the subgradient algorithm
was taken.

Though the number of nodes examined is more for the search method, computation time is
about 1/3—1/S compared to the Land and Doig method, which is not discouraging.

For problem number 6, optimal solution was obtained by the Land and Doig method, but
optimality was not proven within 6935 seconds. When applying the subgradient algorithm, 150 steps
were taken for the original problem, and 15 steps for the subsequent candidate problems. If the
number of step is reduced, computation time for a candidate problem decreases, but the number of
nodes examined may increase, When the algorithm was applied to obtain an approximate solution,
i.e. only for original problem without search, obtained solution was about 5% more than the optimal
solution, and optimal solution was obtained for two problems. It is worth nothing that the two-
processor problems were solved easily compared to the 3 or 4-processor problems.

This fact supplements the successful experience of Bulfin and Parker [3] for the two-processor
problem. '
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