• Title/Summary/Keyword: implant fitness

Search Result 20, Processing Time 0.023 seconds

Esthetic reconstruction of upper central incisor using immediate Frialit-2 implant placement, immediate temporary crown fabrication and IPS Empress 2 crown (즉시 Frialit-2 implant 식립, 즉시 임시치관 제작 그리고 IPS Empress 2 crown을 이용한 상악중절치의 심미적 수복)

  • Kim, Yu-Lee;Oh, Sang-Chun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.19 no.1
    • /
    • pp.43-48
    • /
    • 2003
  • During the past several years, significant advances have occurred in the utilization of osseointegrated implants for the treatment of partially edentulous patients. One of the biggest purposes for treating of these patients is the high demand for improved esthetics, especially in the anterior region. For this esthetics, the new trend in dental implants is the immediate placement and immediate superstructure fabrication. The refined surgical technique, the skillful soft tissue management, and the proper prosthetic coordination are the main factors to achieve natural looking of implant supported prosthesis. The customized provisional restoration and the customized impression coping are recommended for the optimal peri-implant soft tissue contour. The basic concept of Frialit 2 system was the immediate replacement of a tooth with root-analog fixture after extraction. This system guarantees an ideal result in function and esthetics. The ceramic abutment system offers improved quality in the respect of esthetics, fitness, translucency, and biocompatibility. In this clinical report, the final restoration made with IPS Empress 2 crown on the CeraBase abutmen of Frialit 2 system allowed the reproduction of the natural vitality of tooth and adjacent gingiva.

Assessment of Internal Fitness on Resin Crown Fabricated by Digital Light Processing 3D Printer

  • Kang, Wol;Kim, Min-Su;Kim, Won-Gi
    • Journal of dental hygiene science
    • /
    • v.19 no.4
    • /
    • pp.238-244
    • /
    • 2019
  • Background: Recently, three-dimensional (3D) printing has been hailed as a disruptive technology in dentistry. Among 3D printers, a digital light processing (DLP) 3D printer has certain advantages, such as high precision and relatively low cost. Therefore, the latest trend in resin crown manufacturing is the use of DLP 3D printers. However, studies on the internal fitness of such resin crowns are insufficient. The recently introduced 3D evaluation method makes it possible to visually evaluate the error of the desired area. The purpose of this study is to evaluate the internal fitness of resin crowns fabricated a by DLP 3D printer using the 3D evaluation method. Methods: The working model was chosen as the maxillary molar implant model. A total of 20 resin crowns were manufactured by dividing these into two groups. One group was manufactured by subtractive manufacturing system (PMMA), while the other group was manufactured by additive manufacturing system, which uses a DLP 3D printer. Resin crowns data were measured using a 3D evaluation program. Internal fitness was calculated by root mean square (RMS). The RMS was calculated using the Geomagic Verify software, and the mean and standard deviation (SD) were measured. For statistical analysis, IBM SPSS Statistics for Windows ver. 22.0 (IBM Corp., USA) was used. Then, independent t-test was performed between the two groups. Results: The mean±SD of the RMS were 41.51±1.51 and 43.09±2.32 for PMMA and DLP, respectively. There was no statistically significant difference between PMMA and DLP. Conclusion: Evaluation of internal fitness of the resin crown made using a DLP 3D printer and subtractive manufacturing system showed no statistically significant differences, and clinically acceptable results were obtained.

Effect of the Sprue Design on the Fitness of Implant Prosthesis (주입선의 설계가 임플란트 보철물의 적합도에 미치는 영향)

  • Hwang, Sung-Taek;Ahn, Jae-Seok;Shin, Sang-Wan
    • Journal of Technologic Dentistry
    • /
    • v.30 no.2
    • /
    • pp.57-63
    • /
    • 2008
  • Statement of problem: Conventional techniques for implant framework fabrication produce significant error that is inconsistent with passive-fit requirement for osseointegrated implants. One of the etiologic factors which cause the errors is a sprue which may deform the framework during solidification and contraction. Purpose: This study was aimed to evaluate objectively effect of the sprue design on the accuracy of fit of implant prosthesis. Materials and method: Three different designs were considered relative to effect of casting accuracy. The first design had straight sprues and a button of excess alloy at the non-casting end of the sprues. The second was runner bar design(with the button). The last was straight sprues design(without the button). Gold cylinder and laboratory analogue had been used to diminish variables affecting to casting accuracy. Gold alloy and pressure-vacuum casting machine had been used. Marginal gap had been measured by SEM. One-way ANOVA and Duncan test had been used for statistical analysis. Results: The first design showed $79.87{\pm}13.95{\mu}m$ marginal gap. The second and third were $40.17{\pm}15.8{\mu}m$ and $35.17{\pm}9.95{\mu}m$ respectively. Conclusion: Straight sprues without button and runner bar designs were more accurate than straight sprues with button design(P<.05).

  • PDF

Screw joint stability according to abutment screw materials

  • Jeong Yong-Tae;Chung Chae-Heon;Lee Heung-Tae
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.3
    • /
    • pp.297-305
    • /
    • 2001
  • Statement of problem. There have been previous studies about instability according to screw material by means of calculating preload in tightening screw or recording of the torque necessary to loosen screw after tightening screw. Purpose. The purpose of this study was to evaluate screw joint stability through the analysis of fitness at the mating thread surfaces between implant and screw after tightening screws made of different materials. Material and methods. In this study, screws were respectively used to secure a cemented abutment to a hexlock implant fixture; teflon coated titanium alloy screw and titanium alloy screw(Steri-Oss), gold-plated gold-palladium alloy screw and titanium alloy screw(Implant Innovation), gold screw and titanium screw(AVANA Dental Implant System). Each abutment screw was secured to the implant with recommended torque value using a digital torque controller. Each screw was again tightened after 10minutes. All samples were cross sectioned with sandpaper and polished. Then samples were evaluated with an scanning electron microscope analysis. Results. In titanium alloy screw, irregular contact and relatively large gap was present at mating thread surface. Also in teflon-coated titanium screw, incomplete seating and only partially contact was present at the mating thread surface. In gold-plated gold-palladium alloy screw, relatively close and tight contact without the presence of large gap was present by existing of gold coating at the mating thread surfaces. In gold alloy screw, relatively small gap between the mating components was seen. Conclusions. This result suggested that gold plated gold-palladium alloy screw and gold alloy screw achieved a greater degree of contact at the mating thread surfaces compared to titanium alloy screw and teflon-coated titanium alloy screw.

  • PDF

Assessment of internal fitness on resin copings fabricated by 3 - ways methods: Three - dimensional analysis (세 가지 방식으로 제작된 레진코핑의 내면적합성 평가: 3차원적 분석)

  • Kang, Seen-young;Park, Jin-Young;Kim, Dong-Yeon;Kim, Woong-Chul
    • Journal of Technologic Dentistry
    • /
    • v.39 no.1
    • /
    • pp.17-24
    • /
    • 2017
  • Purpose: The purpose of this study was to evaluate the internal fitness of the resin coping that was fabricated by the traditional and Digital manufacturing methods through 3-dimensional analysis. Methods: maxillary right second molar was chosen implant master model. Custom-built impression trays were manufactured. After screwing the pick-up impression coping onto the master cast, impressions were made with silicone impression. The Working model was then made with type IV stone. The coping was fabricated: SLAC group (n=8), APPC group (n=8), LAPC group (n=8) Resin coping data was measured by using a three-dimensional evaluation program. Internal fitness was calculated by RMS (Root Mean Square).It measures mean and Standard Deviation (SD). Results: Three groups are measured $47.11{\pm}(3.08){\mu}m$ total RMS of SLAC group, $48.35({\pm}1.55{\mu}m)$ for total RMS of LAPC group, $43.45{\pm}2.09{\mu}m$ for total RMS of APPC group. Measured value is gradually increased. Followed by autopolymerized pattern resin; Stereolithography resin, Light-activated pattern resin But there were no differences stastically(P>0.321). Conclusion: Evaluation of internal fitness on Resin copings was fabricated by three-ways methods showed that no differences statistically significant and clinically acceptable results.

A photoelastic Stress Analysis of Implant Prosthesis According to Fitness of Super structure (불량 적합 임플란트 보철물의 광탄성 응력 분석)

  • Lim, Hyun-Pil;Heo, Shin-Ok;Kim, Hong-Joo;Park, Sang-Won
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.26 no.1
    • /
    • pp.39-46
    • /
    • 2010
  • To assess the stress distribution of implant prosthesis induced by intentional misfit using photoelastic model. Stress was measured at the surrounding bone after applying vertical load to the implant. Three implants were placed in each of three photoelastic resin blocks. No misfits were used for the control group, while for the experimental group $100{\mu}m$ misfit after cutting the crown was used. The photoelastic stress analysis was performed. In control group, stress concentration was not shown when the load was not applied, whereas stress concentration was shown only in the loaded part even when load was applied and the stress was distributed in anterior-posterior direction when applying a load in the middle. When intentional misfits were given, stress around the fixture was incurred when tightening the screw even if load was not applied. If the load was applied, stress was concentrated around the implants including areas where the load was applied. In particular, the prosthesis made of UCLA showed more stress concentration as compared with a conical abutment. In the UCLA case, concentration was shown from the apex following through the axis to the cervical area. Prosthesis with misfit makes the stress concentrated though the load was not applied and it induces even more severe stress concentration when the load was applied. This founding demonstrates the importance of the correct prosthesis production.

Implant prosthesis for fully edentulous patients using intra-oral scanning and abutment merging technique: A case report (무치악 환자에서 구강 스캔과 지대주 중첩을 이용한 임플란트 보철수복 증례)

  • Hwang, Chan-Hyeon;Jeong, Seung-Mi;Kim, Yong-Jun;Kim, Kyeong-Hee;Fang, Jeong-Whan;Kim, Dae-Hwan;Choi, Byung-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.55 no.1
    • /
    • pp.61-70
    • /
    • 2017
  • In this case, the impression surface of the existing denture was scanned and was inverted three-dimensionally to express the residual ridge form. Implant planning was performed on the superimposed data of the CT with the scanned image of the denture with radiopaque markers attached. At the day of surgery, customized abutments fabricated in accordance with the form of the gingival margin were linked with fixtures and temporary restorations were set. In the process of fabricating the final prosthesis after the osseointegration of implant fixture, the intraoral scan images at abutment level were merged with images of the abutments scanned and stored before implant surgery. By fabricating the final prosthesis with the abutments obtained by merging can increase the marginal fitness of the final prosthesis and simplify the clinical process.

The Effects of Screw Retained Prosthesis Misfit & Cantilever on Stress Distribution in Bone Around the Implant (나사유지형 임플란트 고정성 보철물의 적합도와 캔틸레버가 지지골조직의 응력분산에 미치는 영향)

  • Lee, Jae-In;Kim, Tae-Young;Cho, Hye-Won
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.29 no.3
    • /
    • pp.224-235
    • /
    • 2013
  • A passively fitting prosthesis is an essential prerequisite to attain long-lasting success and maintenance of osseointegration. However, true "passive fit" can not be achieved with the present implant-supported prosthesis fabrication protocol. Many clinical situations are suitably treated with cantilevered implant-supported fixed restorations. The purpose of this study was to compare the stress distribution pattern and magnitude in supporting tissues around ITI implants with cantilevered, implant-supported, screw-retained fixed prosthesis according to the fitness of superstructures. Photoelastic model was made with PL-2 resin (Measurements, Raleigh, USA) and three ITI implants (${\phi}4.1{\times}10mm$) were placed in the mandibular posterior edentulous area distal to the canine. Anterior and posterior extended 4-unit cantilevered FPDs were made with different misfit in the superstructures. 4 types of prosthesis were made by placing a $100{\mu}m$ gap between the abutment and the crown on the second premolar and/or the first molar. Photoelastic stress analysis were carried out to measure the fringe order around the implant supporting structure under simulated loading conditions (30 lb).

A comparative study on the fit and screw joint stability of ready-made abutment and CAD-CAM custom-made abutment (기성 지대주와 맞춤형 CAD-CAM 지대주의 적합 및 나사 안정성 비교)

  • Kim, Jong-Wook;Heo, Yu-Ri;Kim, Hee-Jung;Chung, Chae-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.51 no.4
    • /
    • pp.276-283
    • /
    • 2013
  • Purpose: The purpose of this study was to investigate the fit and screw joint stability between Ready-made abutment and CAD-CAM custom-made abutment. Materials and methods: Osstem implant system was used. Ready-made abutment (Transfer abutment, Osstem Implant Co. Ltd, Busan, Korea), CAD-CAM custom-made abutment (CustomFit abutment, Osstem Implant Co. Ltd, Busan, Korea) and domestically manufactured CAD-CAM custom-made abutment (Myplant, Raphabio Co., Seoul, Korea) were fabricated five each and screws were provided by each company. Fixture and abutments were tightening with 30Ncm according to the manufacturer's instruction and then preloding reverse torque values were measured 3 times repeatedly. Kruskal-Wallis test was used for statistical analysis of the preloading reverse torque values (${\alpha}=.05$). After specimens were embedded into epoxy resin, wet cutting and polishing was performed and FE-SEM imaging was performed, on the contact interface. Results: The pre-loading reverse torque values were $26.0{\pm}0.30Ncm$ (ready-made abutment; Transfer abutment) and $26.3{\pm}0.32Ncm$ (CAD-CAM custom-made abutment; CustomFit abutment) and $24.7{\pm}0.67Ncm$ (CAD-CAM custom-made abutment; Myplant). The domestically manufactured CAD-CAM custom-made abutment (Myplant abutment) presented lower pre-loading reverse torque value with statistically significant difference than that of the ready-made abutment (Transfer abutment) and CAD-CAM custom-made abutment (CustomFit abutment) manufactured from the same company (P=.027) and showed marginal gap in the fixture-abutment interface. Conclusion: Within the limitation of the present in-vitro study, in domestically manufactured CAD-CAM custom-made abutment (Myplant abutment) showed lower screw joint stability and fitness between fixture and abutment.

Evaluation of the accuracy of two different surgical guides in dental implantology: stereolithography fabricated vs. positioning device fabricated surgical guides (제작방법에 따른 임플란트 수술 가이드의 정확성비교: stereolithography와 positioning device로 제작한 수술 가이드)

  • Kwon, Chang-Ryeol;Choi, Byung-Ho;Jeong, Seung-Mi;Joo, Sang-Dong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.50 no.4
    • /
    • pp.271-278
    • /
    • 2012
  • Purpose: Recently implant surgical guides were used for accurate and atraumatic operation. In this study, the accuracy of two different types of surgical guides, positioning device fabricated and stereolithography fabricated surgical guides, were evaluated in four different types of tooth loss models. Materials and methods: Surgical guides were fabricated with stereolithography and positioning device respectively. Implants were placed on 40 models using the two different types of surgical guides. The fitness of the surgical guides was evaluated by measuring the gap between the surgical guide and the model. The accuracy of surgical guide was evaluated on a pre- and post-surgical CT image fusion. Results: The gap between the surgical guide and the model was $1.4{\pm}0.3mm$ and $0.4{\pm}0.3mm$ for the stereolithography and positioning device surgical guide, respectively. The stereolithography showed mesiodistal angular deviation of $3.9{\pm}1.6^{\circ}$, buccolingual angular deviation of $2.7{\pm}1.5^{\circ}$ and vertical deviation of $1.9{\pm}0.9mm$, whereas the positioning device showed mesiodistal angular deviation of $0.7{\pm}0.3^{\circ}$, buccolingual angular deviation of $0.3{\pm}0.2^{\circ}$ and vertical deviation of $0.4{\pm}0.2mm$. The differences were statistically significant between the two groups (P<.05). Conclusion: The laboratory fabricated surgical guides using a positioning device allow implant placement more accurately than the stereolithography surgical guides in dental clinic.