• 제목/요약/키워드: impedance sensing

검색결과 121건 처리시간 0.028초

양극산화법으로 제조한 산화 알루미늄 막의 감습특성 연구 (A study on humidity sensing properties of oxide aluminum films by Anodic oxidation)

  • 전범진;전용우;이월인;소대화
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1994년도 추계학술대회 논문집
    • /
    • pp.113-117
    • /
    • 1994
  • In this paper, an experiment about humidity sensing properties of oxide aluminum films by Anodic oxidation method was made. The humidity sensing properties of films were investigated in the relative humidity range of 10∼85(%RH) , changing the frequency from 1[kHz] to 100[kHz]. The impedance of humidity sensing films were decreased in accordance with the increase of relative humidity. The decreasing rate of impedance were larger at low measuring frequency. The decreasing difference changes from 17.7M$\Omega$ to 3.68M$\Omega$ at low measuring frequency.

셀프센싱 상시계측 기반 CFRP보강 콘크리트 구조물의 손상검색 (Damage Detecion of CFRP-Laminated Concrete based on a Continuous Self-Sensing Technology)

  • 김영진;박승희;진규남;이창길
    • 토지주택연구
    • /
    • 제2권4호
    • /
    • pp.407-413
    • /
    • 2011
  • 본 논문에서는 콘크리트 보의 표면에 부착된 CFRP (Carbon Fiber Reinforced Plastic) 보강재의 박리 손상 진단을 위한 구조 건전성 모니터링 기법을 소개한다. 이를 위해 압전 능동 센서를 이용한 셀프센싱 회로 기반의 다중 스케일 계측 기법이 적용되었다. 다중 스케일 계측 시스템으로부터 셀프센싱 임피던스 계측을 통한 주파수 영역 구조 응답 및 셀프센싱 유도 초음파 계측을 통한 특정 주파수에서의 구조 응답을 획득할 수 있다. 박리 손상의 정량화를 위하여 임피던스 및 유도 초음파 신호로부터 추출된 손상 특성을 이용하여 2차원 손상 지수를 도출하고 이를 지도학습 기반 확률론적 패턴인식 기법에 적용하였다.

와전류 센서를 이용한 금속 모재 선별에 관한 연구 (A Study on sorting out base metal using eddy current sensor)

  • 이길승;김태옥;김화영;안중환
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1788-1792
    • /
    • 2005
  • Eddy current sensor is representative instrument measuring gap to base metal and sensing trouble in base metal. The existing eddy current sensor works as measuring variance of sensor coil's inductance. But, sensor coil have phenomenon that not only inductance but also real resistance varies in real action. Conductivity and Permeability are main variable in sensor coil's varying impedance(inductance, real resistance). By searching relationship between conductivity-permeability and sensor coil's impedance, eddy current sensor gain advantage of elevation of accuracy, removal of alignment to each base metal, and continuous sensing to varying base metal.

  • PDF

탄소나노튜브 스마트 복합소재의 전기적 임피던스 변화를 이용한 나노센서의 센싱 특성 연구 (A Study on Sensing Characteristics of Carbon Nanotube Smart Composite Nano Sensors Based on Electrical Impedance Measurement)

  • 강인필
    • 동력기계공학회지
    • /
    • 제13권1호
    • /
    • pp.65-71
    • /
    • 2009
  • To address the need for new intelligent sensing, this paper introduces nano sensors made of carbon nanotube (CNT) composites and presents their preliminary experiments. Having smart material properties such as piezoresistivity, chemical and bio selectivity, the nano composite can be used as smart electrodes of the nano sensors. The nano composite sensor can detect structural deterioration, chemical contamination and bio signal by means of its impedance measurement (resistance and capacitance). For a structural application, the change of impedance shows specific patterns depending on the structural deterioration and this characteristic is available for an in-situ multi-functional sensor, which can simultaneously detect multi symptoms of the structure. This study is anticipated to develop a new nano sensor detecting multiple symptoms in structural, chemical and bio applications with simple electric circuits.

  • PDF

Electro-mechanical impedance based monitoring for the setting of cement paste using piezoelectricity sensor

  • Lee, Jun Cheol;Shin, Sung Woo;Kim, Wha Jung;Lee, Chang Joon
    • Smart Structures and Systems
    • /
    • 제17권1호
    • /
    • pp.123-134
    • /
    • 2016
  • The evolution of the electro-mechanical impedance (EMI) of a piezoelectricity (PZT) sensor was investigated to determine the setting times of cement paste in this study. The PZT sensor coated with non-conductive acrylic resin was embedded in fresh cement paste and the EMI signatures were continuously monitored. Vicat needle test and semi-adiabatic calorimetry test were also conducted to validate the EMI sensing technique. Significant changes in the EMI resonance peak magnitude and frequency during the setting period were observed and the setting times determined by EMI sensing technique were relevant to those measured by Vicat needle test and semi-adiabatic calorimetry test.

Strength Development Monitoring of Concrete Using Smart PZT Transducers

  • Sung, Woo-Shin
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2009년도 춘계 학술대회 제21권1호
    • /
    • pp.573-574
    • /
    • 2009
  • The feasibility of electro-mechanical impedance (EMI) sensing technique, utilizing piezo-ceramic (PZT) patches, for online strength gain monitoring of early age concrete is investigated. An experimental study is conducted on PZT patch instrumented concrete specimens. The applicability of the EMI sensing technique for strength gain monitoring is discussed.

  • PDF

전기화학적 임피던스 Fitting 개선을 위한 전극/전해질 계면의 전기회로 모델 연구 (A Study on the Electrical Circuit Model of the Electrode/Electrolyte Interface for Improving Electrochemical Impedance Fitting)

  • 장종현;박정호
    • 전기학회논문지
    • /
    • 제56권6호
    • /
    • pp.1087-1091
    • /
    • 2007
  • Exact impedance modeling of the electrode/electrolyte interface is important in bio-signal sensing electrode development. Therefore, the investigation of the equivalent circuit models for the interface has been pursued for a long time by several researchers. Previous circuit models fit the experimental results in limited conditions such as frequency range, type of electrode, or electrolyte. This paper describes a new electrical circuit model and its capability of fitting the experimental results. The proposed model consists of three resistors and two constant phase elements. Electrochemical impedance spectroscopy was used to characterize the interface for Au, Pt, and stainless steel electrode in 0.9% NaCl solution. Both the proposed model and the previous model were applied to fit the measured impedance results for comparison. The proposed model fits the experimental data more accurately than other models especially at the low frequency range, and it enables us to predict the impedance at very low frequency range, including DC, using the proposed model.

EMI based multi-bolt looseness detection using series/parallel multi-sensing technique

  • Chen, Dongdong;Huo, Linsheng;Song, Gangbing
    • Smart Structures and Systems
    • /
    • 제25권4호
    • /
    • pp.423-432
    • /
    • 2020
  • In this paper, a novel but practical approach named series/parallel multi-sensing technique was proposed to evaluate the bolt looseness in a bolt group. The smart washers (SWs), which were fabricated by embedding a Lead Zirconate Titanate (PZT) transducer into two flat metal rings, were installed to the bolts group. By series connection of SWs, the impedance signals of different bolts can be obtained through only one sweep. Therefore, once the loosening occurred, the shift of different peak frequencies can be used to locate which bolt has loosened. The proposed multi input single output (MISO) damage detection scheme is very suitable for the structural health monitoring (SHM) of joint with a large number of bolts connection. Another notable contribution of this paper is the proposal of 3-dB bandwidth root mean square deviation (3 dB-RMSD) which can quantitatively evaluate the severity of bolt looseness. Compared with the traditional naked-eye observation method, the equivalent circuit based 3-dB bandwidth can accurately define the calculation range of RMSD. An experiment with three bolted connection specimens that installed the SWs was carried out to validate our proposed approach. Experimental result shows that the proposed 3 dB-RMSD based multi-sensing technique can not only identify the loosened bolt but also monitor the severity of bolt looseness.

Investigation of Setting Process of Cementitious Materials Using Electromechanical Impedance of Embedded Piezoelectric Patch

  • Lee, Chang Joon;Lee, Jun Cheol;Shin, Sung Woo;Kim, Wha Jung
    • 한국건축시공학회지
    • /
    • 제12권6호
    • /
    • pp.607-614
    • /
    • 2012
  • In this study, the evolution of the electro-mechanical impedance (EMI) of a piezoelectric (PZT) patch embedded in fresh cement paste was investigated to discuss the possibility of monitoring the setting process of cement-based materials using an EMI sensing technique. A tailored thin square PZT patch was embedded in cement paste before casting, and EMI signatures of the embedded patch were continuously measured from casting up to 12 hours. A standard penetration resistance test was performed to compare and correlate the evolution of EMI during the setting process. The results showed that EMI responses differ according to the age of the cement paste, and that the behavior of the EMI resonance peak has a clear correlation with the penetration resistance of the cement paste. Based on the results, it is concluded that an EMI sensing technique using embedded PZT patch can be effectively applied to monitor the setting process of cement-based materials.

압전센서를 이용하는 철로에서의 손상 검색 기술 (Damage Detection of Railroad Tracks Using Piezoelectric Sensors)

  • 윤정방;박승희;다니엘 인만
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.240-247
    • /
    • 2006
  • Piezoelectric sensor-based health monitoring technique using a two-step support vector machine (SYM) classifier is discussed for damage identification of a railroad track. An active sensing system composed of two PZT patches was investigated in conjunction with both impedance and guided wave propagation methods to detect two kinds of damage of the railroad track (one is a hole damage of 0.5cm in diameter at web section and the other is a transverse cut damage of 7.5cm in length and 0.5cm in depth at head section). Two damage-sensitive features were extracted one by one from each method; a) feature I: root mean square deviations (RMSD) of impedance signatures and b) feature II: wavelet coefficients for $A_0$ mode of guided waves. By defining damage indices from those damage-sensitive features, a two-dimensional damage feature (2-D DF) space was made. In order to minimize a false-positive indication of the current active sensing system, a two-step SYM classifier was applied to the 2-D DF space. As a result, optimal separable hyper-planes were successfully established by the two-step SYM classifier: Damage detection was accomplished by the first step-SYM, and damage classification was also carried out by the second step-SYM. Finally, the applicability of the proposed two-step SYM classifier has been verified by thirty test patterns.

  • PDF