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Damage Detection of Railroad Tracks Using Piezoelectric Sensors
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ABSTRACT

Piezoelectric sensor-based health monitoring technique using a two-step support vector machine (SVM) classifier is
discussed for damage identification of a railroad track. An active sensing system composed of two PZT patches was
investigated in conjunction with both impedance and guided wave propagation methods to detect two kinds of damage of
the railroad track (one is a hole damage of 0.5cim in diameter at web section and the other is a transverse cut damage of
7.5cm in length and 0.5cm in depth at head section). Two damage-sensitive features were extracted one by one from each
method; a) feature I: root mean square deviations (RMSD) of impedance signatures and b) feature II: wavelet coefficients
for Ay mode of guided waves. By defining damage indices from those damage-sensitive features, a two-dimensional
damage feature (2-D DF) space was made. In order to minimize a false-positive indication of the current active sensing
system, a two-step SVM classifier was applied to the 2-D DF space. As a result, optimal separable hyper-planes were
successfully established by the two-step SVM classifier: Damage detection was accomplished by the first step-SVM, and
damage classification was also carried out by the second step-SVM. Finally, the applicability of the proposed two-step
SVM classifier has been verified by thirty test patterns.

Keywords: Piezoelectric Sensors (PZI), Structural Health Monitoring, Impedance, Guided Waves, RMSD, Wavelet
Analysis, Support Vector Machines, Railroad Tracks.

1. Introduction

It has been reported that train accidents caused by railroad track failures resulted in 2700 derailments and $302million in
direct costs during the decade 1992-2002 ($48million in the year 2001 alone) (US federal railroad administration 2002).
The main causes of these accidents have proved to be deteriorating condition of aging rail tracks. A recent example is the
derailment accident on Chicago's south side in September 17, 20035, shown in Figure 1. In order to prevent similar
accidents, a smart monitoring system including low-cost but high-effect smart sensors such as piezoelectric sensors, optical
fiber sensors, and micro-electromechanical system (MEMS) sensors and wireless risk alarming systems is being
investigated. Conventionally, magnetic or ultrasonic transducer-based techniques have been used for railroad track
inspection (Clark et al. 2004, Grewal et al. 1996, and Cawley et al. 2003). However, those techniques usually require a
direct access to the structure and involve bulky equipment. Moreover, those techniques require disruptions of the operation
of the structure/equipment, which is not attractive for real world-application. Therefore, this study introduces an active
sensing system composed of two PZT patches in conjunction with both impedance and guided wave propagation methods
for damage detection of the railroad track. Two damage-sensitive features were extracted one by one from each method. By
defining damage indices from those two damage-sensitive features, a two-dimensional damage feature (2-D DF) space has
been made. Furthermore, a two-step SVM classifier was newly applied to the 2-D DF space. Finally, the applicability of the
proposed two-step SVM classifier has been verified.

2. Plezoelectric Sensor-based SHM Techniques

Piezoelectric sensors, which are shown in Figure 2, can be used as both actuators and sensors at the same time. When an
electric field is applied to the piezoelectric material, the material produces mechanical strains proportional to the electrical
field (actuators). Conversely, when mechanical pressure is applied, the material obtains voltage proportional to the pressure
(sensors). The following constitutive equations describe the effects of the piezoelectric materials:
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where S, is a mechanical strain, 7}, is a mechamcal stress, E, is an applied electnc field, D, is a dielectric
displacement, S w1 a mechanical compliance (at constant electric field), S,k is a dielectric permittivity (at constant

mechanical stress), and d . is a piezoelectric constant. Based on this functionality, piezoelectric ceramic lead-zirconate-

titanate (PZT) patches have been the most widely used in SHM fields (Giurgiutiu and Rogers 1997, Park et al. 2000, Park
et al. 2005, Giurgiutiu ef al. 2003, and Raghavan ef al. 2004). There are two kinds of significant PZT-based SHM methods:
(a) impedance-based damage detection method, and (b) guided wave propagation-based damage detection method.

2.1. Impedance-based Damage Detection Techniques

The coupling effect of the electro-mechanical impedance of a system with PZT and a host structure can be conceptually
investigated as shown in Figure 3 (Giurgiutiv and Rogers 1997). The integrated electro-mechanical system may be
electrically represented by the electrical impedance which is affected bv the dynamics of the PZT and the host structure
given by (Giurgiutiu and Rogers 1997)

Z,(»)
Z () +Z,(»)
where (' is the zero-load capacitance of the PZT and K, is the electromechanical coupling coefficient of the PZT. The

electro-mechanical impedance technique permits damage detection, health monitoring, and built-in NDE because it can
measure directly the high frequency local impedance which is very sensitive to local damage. In other words, changes of
the mechanical properties of the host structure may be detected by monitoring the variations of the electro-mechanical
impedance functions shown in Equation (3). Experimental setup for the impedance-based damage detection techniques
consists of an impedance analyzer (HP4194A), a personal computer which can control Matlab programs for data
acquisition, signal processing and damage diagnosis, and a built-in PZT patch structural system, as illustrated in Figure 4.
For damage quantifications of the impedance-based damage detection techmque root mean square deviations (RMSD) of
the impedance signatures would be considered as a damage indicator, which is given by
i=N
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where Z(w,) is the post-damage impedance signature at the i-th measurement point and Z,(,) is the corresponding

pre-damage value. Recently, an outlier analysis (novelty detection)-based damage detection method was successfully
applied to the impedance methods by Park et al. 2005. An optimal threshold value for damage detection should be
determined through the outlier analysis.

Ztatal (0)) = [IC()C(I - K;| )]_1 (3)

2.2, Guided Wave Propagation-based Damage Detection Techniques

Lamb waves refer to elastic perturbations propagating in a solid plate with doubly free boundaries, for which displacements
occur both in parallel and perpendicular to the direction of wave propagation (Viktorov er 4l.1967). There are two groups of
waves, symmetric and anti-symmetric, which propagate independently of each other. A graphical representation of those
two groups of waves can be seen in Figure 5. If a set of transmitting and receiving PZT patches are placed on a structure,
the received signal contains information about the integrity along the wave path between two PZT patches. Therefore, the
present method may be used to monitor a path rather than a point, and considerable savings in testing time may be obtained.
Unfortunately, however, Lamb wave testing gets complicated by the dispersive nature of Lamb waves. Figure 5 presenting
dispersion curves of Lamb waves for a steel plate shows that many wave components with different group velocities exist
at the high frequency range. So, attempts have been made to limit the bandwidth of the excitation to a low frequency range
over which there exist only two fundamental modes (Ajor Sg). An investigation on the dominance of the fundamental
Lamb modes over the proper frequency range for the steel members has been reported (Giurgiutiu er ¢l 2003 and
Raghavan et al. 2004). Accordingly, the only Ay mode is intentionally selected and investigated for the present study.
Experimental setup for the guided wave propagation-based damage detection techniques consists of a function generator
with an amplifier. a digital oscilloscope, a personal computer which can control Matlab programs for data acquisition,
signal processing and damage diagnosis, and PZT patch built-in structural system, as shown in Figure 6. Wavelet analysis
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would be implemented for a joint time-frequency analysis of the guided waves (Jeong et al. 2000). A general overview of
wavelet analysis may be found in Chui et al 1992. Using a sclected mother wavelet function, w(¢), the continuous

wavelet transform (CWT) of a signal x(¢) is defined as
. <0 1 . t-b
WHb,a)=1 x(t)—=y (—)dt 5
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where continuous variables @ and b are the scale and translation parameters, respectively. In the present study, a “Morlet
wavelet” is employed as a mother wavelet function, Recently, wavelet-based approaches for damage detection have been
reported by Staszewski ef al. 1997 and Hou et al. 2000.

3. Damage Index Approach

In this study, two kinds of damage-sensitive features are utilized: a) feature I: root mean square deviations (RMSD) of
impedance signatures, and b) feature II: wavelet coefficients for A, mode of the guided waves. From those features,
appropriate damage indices would be proposed as follows:
Rd _ RO
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where R means RMSD, Ci means wavelet coefficients of the corresponding wave mode, superscripts  and O

mean ‘after a corresponding damage step” and ‘before a corresponding damage step’, respectively. These damage indices
will compose a two-dimensional damage feature (2-D DF) space ( DFX for x-axis and DFY for y-axis).

4. Damage Identification Using Two-Step Support Vector Machine Classifier

In order to minimize a false-positive indication in the 2-D DF space of the current active sensing system, the establishment
of an optimal decision boundary is strongly required. For this kind of decision making problem, support vector machine
(SVM) algorithm has emerged as a powerful tool (Vapnik et al.1995). The SVM is an automated learning system that uses
a hypothesis space of linear functions in a high dimensional feature space. The simplest model is called linear SVM, and it
works for data that are linearly separable in the original feature space only. In the early 1990s, nonlinear classification in
the same procedure as linear SVM became possible by introducing nonlinear functions called kernel functions without
being conscious of actual mapping space. This extended technique of nonlinear feature spaces is called nonlinear SVM

shown in Figure 7. Assume the training sample S consisting of vectors x; € R” with 7=1,..., N, and each vector x,
belongs to either of two classes thus is given a label y, € {— l,l}A The pair of (w,b) defines a separating hyper-plane of
equation as follows:
Sz((xlsyl)w"(xl\'!y}v’)) &)
(w-x)+b=0 ®
where W and b are arbitrary constants.
However, Equation (9) can possibly separate any part of the feature space, therefore one needs to establish an optimal
separating hyper-plane (OSH) that divides § leaving all the points of the same class on the same side, while maximizing
the margin which is the distance of the closest point of S. The closest vector x, is called support vector and the OSH
(w',b') can be determined by solving an optimization problem. The resulting SVM is called maximal margin SVM. In
order to relax the situation, maximal margin SVM is generalized by introducing non-negative slack variables

&=(4.&,,....&y) asfollows:
Minimize  d(w')= 2 (w'w)+CY £, (10)
Subjectto ((w . x,.)+b') 21-¢, i=12,..N, £20

The purpose of the extra term C3 &, , where i=1,..., N is to keep under control the number of misclassified vectors.
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The parameter C can be regarded as a regularization parameter. The OSH tends to maximize the minimum distance of
I/w with small C, and minimize the number of misclassified vectors with large C . To solve the case of nonlinear

decision surfaces, the OSH is carried out by nonlinearly transforming a set of original feature vectors X, into a high-
dimensional feature space by mapping @ x, +» z, and then performing the linear separation. However, it requires an
enormous computation of inner products (@(x)-®(x,)) in the high-dimensional feature space. A kernel function that

satisfies the Mercer’s theorem given in Equation (11) significantly reduces this process. In this study, a polynomial function
machine with convolution function given in Equation (12) would be used as the kernel function.

(@) ®(x,))= K (x.x,) an
K(x;,x,)=(x,-x,+1) a2

Some attempts to implement the SVM algorithm for structural health monitoring and damage detection have been made by
Mita et al. 2004 and Park ef al. 2005, They have shown the successful capabilities of the SVM algorithm for loosening
bolts inspection on jointed structures. In the present study, a two-step SVM classifier is newly introduced. The first step-
SVM is for discrimination of damage states from an intact state. The second step-SVM is for classification of damage types
according to the location and degree of the damage.

5. Validation of the Proposed Approach through Experimental Study

An experimental study was carried out to validate the applicability of the proposed approach for health monitoring of a
railroad track. A lab-size railroad track with a length of 140 cm was used as a test specimen, as shown in Figure 8. Two
PZT patches of 2 em x 2 em were surface mounted on the sidewall of the web of the specimen. For damage scenario, two
kinds of damage (one is a hole damage of 0.5¢m in diameter at web section and the other is a transverse cut damage of
7.5cm in length and 0.5cm in depth at head section) were artificially inflicted in a sequence. First, the baseline signals were
recorded 30 times and averaged from both impedance and guided wave methods. Impedance measurement was carried out
over the frequency range of 140 kHz to 150 kHz at PZT #1. (Figure 9(a)) Concurrently, a single pair of pitch-catch guided
wave propagation data with an input of 3-cycle sine waves in the magnitude of 10V at PZT #1 was recorded at PZT #2, and
A, mode only was selected from the wavelet response signal. (Figure 9(b)) The same procedures were repeated for all
damage cases. The measurement under a different sensor configuration, switched each other between PZT #1 and PZT #2
(PZT #1 « PZT #2), was also performed ten times for each case. They are used as test patterns to verify the effectiveness
of the proposed SVM classifier. Then, the damage-sensitive features were extracted as described in Table 1. As shown in
Figure 9(a), an optimal threshold value of RMSD for damage detection was decided as 0.32 by an outlier analysis, and it is
noted that feature I could not detect a hole damage. In addition, Figure 9(b) shows that feature II did not give any visible
changes due to damage. In order to overcome these limitations, the proposed two-step SVM classifier was applied, as
shown in Figure 10. A two-dimensional damage feature (2-D DF) space was obtained by calculating the damage indices
defined in Equations (6) and (7), and optimal separable hyper-planes (OSH) for minimization of a false-positive indication
were successfully established by using the two-step SVM classifier: Damage detection was performed by the first step-
SVM and damage classification was also carried out by the second step-SVM. Finally, thirty test patterns prepared
beforehand were investigated to verify the effectiveness of the proposed SVM classifiers. As a result, it can be observed
that the SVM classifier has an excellent performance for damage identification. As illustrated in Figure 11, every output
except only one test pattern yielded the same values with its own original target values (damage estimation rate of 96.67 %).

8. Concluslons

Piezoelectric sensor-based health monitoring technique using a two-step support vector machine (SVM) classifier was
discussed for damage identification of a railroad track. An active sensing system composed of two PZT patches was
investigated in conjunction with both impedance and gnided wave-based damage detection methods to detect two kinds of
damage of the railroad track (one is a hole damage of 0.5¢m in diameter at web section and the other is a transverse cut
damage of 7.5cm in length and 0.5cm in depth at head section). A two-dimensional damage feature (2-D DF) space was
made by introducing appropriate damage-sensitive features. In order to minimize a false-positive indication of the current
active sensing system, a two-step SVM classifier was newly applied to the 2-D DF space. As a result, optimal separable
hyper-planes were successfully established by using the two-step SVM classifier: Damage detection was performed by the
first step-SVM, and damage classification was also carried out by the second step-SVM. Finally, the applicability of the
proposed SVM classifier has been verified by showing an excellent damage estimation rate of 96.67%. The present
approaches provide an improved methodology for on-line health monitoring of real-world railroad structures.
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Figure 6. Experimental Setup for Guided Wave Propagation-based Damage Detection Techniques
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Table 1. Damage-Sensitive Features for Intact and Damage States
(feature I RMSD of Impedance Data and feature II: Sum of Square of Wavelet Coefficients for A Mode)

Jehetis) =2

Intact Damage 1 Damage 2
feature I feature I1 feature 1 feature I1 feature [ feature i1
0.1535 1.1392¢-004 0.2294 1.1126e-004 0.6819 1.1129¢-004
0.1594 1.136%9¢-004 0.2458 1.1223¢-004 0.6915 1.1161¢-004
0.2143 1.1272¢-004 0.2499 1.1176e-004 0.8356 1.108%¢-004
0.1982 1.1303e-004 0.1991 1.1181e-004 (0.7208 1.1201¢-004
0.1815 1.139¢-004 0.1755 1.1152e-004 0.5663 1.1173e-004
0.1955 1.1361e-004 0.2136 1.1216¢-004 0.8865 1.1104¢-004
0.2284 1.1288¢-004 0.2383 1.1164¢-004 0.8255 1.1178e-004
0.1407 1.1377¢-004 0.1829 1.1189¢-004 0.5979 1.1122¢-004
0.1591 1.1311¢-004 0.2446 1.1137¢-004 0.6999 1.1095¢-004
0.1173 1.1379¢-004 0.2574 1.1144e-004 0.7912 1.1117e-004
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Figure 10, Establishment of Optimal Separable Hyper-planes by Two-Step SVM Classifier
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Figure 11. Damage Identification on Two-Dimensional Damage Feature Space
(Damage Estimation Rate of 96.67%)
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