Browse > Article
http://dx.doi.org/10.12989/sss.2020.25.4.423

EMI based multi-bolt looseness detection using series/parallel multi-sensing technique  

Chen, Dongdong (State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology)
Huo, Linsheng (State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology)
Song, Gangbing (Smart Materials and Structures Laboratory, Department of Mechanical Engineering, University of Houston)
Publication Information
Smart Structures and Systems / v.25, no.4, 2020 , pp. 423-432 More about this Journal
Abstract
In this paper, a novel but practical approach named series/parallel multi-sensing technique was proposed to evaluate the bolt looseness in a bolt group. The smart washers (SWs), which were fabricated by embedding a Lead Zirconate Titanate (PZT) transducer into two flat metal rings, were installed to the bolts group. By series connection of SWs, the impedance signals of different bolts can be obtained through only one sweep. Therefore, once the loosening occurred, the shift of different peak frequencies can be used to locate which bolt has loosened. The proposed multi input single output (MISO) damage detection scheme is very suitable for the structural health monitoring (SHM) of joint with a large number of bolts connection. Another notable contribution of this paper is the proposal of 3-dB bandwidth root mean square deviation (3 dB-RMSD) which can quantitatively evaluate the severity of bolt looseness. Compared with the traditional naked-eye observation method, the equivalent circuit based 3-dB bandwidth can accurately define the calculation range of RMSD. An experiment with three bolted connection specimens that installed the SWs was carried out to validate our proposed approach. Experimental result shows that the proposed 3 dB-RMSD based multi-sensing technique can not only identify the loosened bolt but also monitor the severity of bolt looseness.
Keywords
bolt looseness detection; PZT; impedance; series/parallel multi-sensing technique; equivalent circuit; 3 dB-RMSD;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Soh, C.K., Tseng, K.K., Bhalla, S. and Gupta, A. (2000), "Performance of smart piezoceramic patches in health monitoring of a RC bridge", Smart Mater. Struct., 9(4), 533. https://doi.org/10.1088/0964-1726/9/4/317   DOI
2 Sohn, H., Park, G., Wait, J.R., Limback, N.P. and Farrar, C.R. (2003), "Wavelet-based active sensing for delamination detection in composite structures", Smart Mater. Struct., 13(1), 153. https://doi.org/10.1088/0964-1726/13/1/017   DOI
3 Song, G., Gu, H., Mo, Y., Hsu, T. and Dhonde, H. (2007), "Concrete structural health monitoring using embedded piezoceramic transducers", Smart Mater. Struct., 16(4), 959. https://doi.org/10.1088/0964-1726/16/4/003   DOI
4 Song, G., Li, H., Gajic, B., Zhou, W., Chen, P. and Gu, H. (2013), "Wind turbine blade health monitoring with piezoceramic-based wireless sensor network", Int. J. Smart Nano Mater., 4(3), 150-166. https://doi.org/10.1080/19475411.2013.836577   DOI
5 Standards Committee of the IEEE Ultrasonics, Ferroelectrics, and Frequency Control Society (1987), IEEE Standard on Piezoelectricity, The Institute of Electrical and Electronics Engineers, New York, NY, USA.
6 Suda, M., Hasuo, Y., Kanaya, A., Ogura, Y., Takishita, T. and Suzuki, Y. (2008), "Development of Ultrasonic Axial Bolting Force Inspection System for Turbine Bolts in Thermal Power Plants", Int. J. Ser Solid Mech. Strength Mater., 35(2), 216-219. https://doi.org/10.1299/jsmea1988.35.2_216
7 Sun, F.P., Chaudhry, Z., Liang, C. and Rogers, C. (1995), "Truss structure integrity identification using PZT sensor-actuator", J. Intell. Mater. Syst. Struct., 6(1), 134-139. https://doi.org/10.1177/1045389X9500600117   DOI
8 Tawie, R., Lee, H. and Park, S. (2010), "Non-destructive evaluation of concrete quality using PZT transducers", Smart Struct. Syst., Int. J., 6(7), 851-866. https://doi.org/10.12989/sss.2010.6.7.851   DOI
9 Bhalla, S. and Soh, C.K. (2004a), "Structural health monitoring by piezo-impedance transducers. I: Modeling", J. Aerospace Eng., 17(4), 154-165. https://doi.org/10.1061/(ASCE)0893-1321(2004)17:4(154)   DOI
10 Bhalla, S. and Soh, C.K. (2004b), "Structural health monitoring by piezo-impedance transducers. II: applications", J. Aerosp. Eng., 17(4), 166-175. https://doi.org/10.1061/(ASCE)0893-1321(2004)17:4(166)   DOI
11 Di, B., Wang, J., Li, H., Zheng, J., Zheng, Y. and Song, G. (2019), "Investigation of bonding behavior of FRP and steel bars in selfcompacting concrete structures using acoustic emission method", Sensors, 19(1), 159. https://doi.org/10.3390/s19010159   DOI
12 Caccese, V., Mewer, R. and Vel, S.S. (2004), "Detection of bolt load loss in hybrid composite/metal bolted connections", Eng. Struct., 26(7), 895-906. https://doi.org/10.1016/j.engstruct.2004.02.008   DOI
13 Chen, B., Hei, C., Luo, M.Z., Ho, M.S.C. and Song, G.B. (2018a), "Pipeline two-dimensional impact location determination using time of arrival with instant phase (TOAIP) with piezoceramic transducer array", Smart Mater. Struct., 27(10). https://doi.org/10.1088/1361-665X/aadaa9
14 Chen, D.D., Huo, L.S., Li, H.N. and Song, G.B. (2018b), "A Fiber Bragg Grating (FBG)-Enabled Smart Washer for Bolt Pre-Load Measurement: Design, Analysis, Calibration, and Experimental Validation", Sensors, 18(8). https://doi.org/10.3390/s18082586
15 Ewere, F. and Wang, G. (2014), "Performance of galloping piezoelectric energy harvesters", J. Intell. Mater. Syst. Struct., 25(14), 1693-1704. https://doi.org/10.1177/1045389X13505251   DOI
16 Ewere, F., Wang, G. and Cain, B. (2014), "Experimental investigation of galloping piezoelectric energy harvesters with square bluff bodies", Smart Mater. Struct., 23(10), 104012. https://doi.org/10.1088/0964-1726/23/10/104012   DOI
17 Fan, X., Li, J. and Hao, H. (2018a), "Impedance resonant frequency sensitivity based structural damage identification with sparse regularization: experimental studies", Smart Mater. Struct., 28(1), 015003. https://doi.org/10.1088/1361-665X/aaeb7a   DOI
18 Fan, X., Li, J., Hao, H. and Ma, S. (2018b), "Identification of minor structural damage based on electromechanical impedance sensitivity and sparse regularization", J. Aerosp. Eng., 31(5), 04018061. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000892   DOI
19 Wang, T., Song, G., Liu, S., Li, Y. and Xiao, H. (2013a), "Review of Bolted Connection Monitoring", Int. J. Distrib. Sensor N. https://doi.org/10.1155/2013/871213
20 Wang, D. and Zhu, H. (2011), "Monitoring of the strength gain of concrete using embedded PZT impedance transducer", Constr. Build. Mater., 25(9), 3703-3708. https://doi.org/10.1016/j.conbuildmat.2011.04.020   DOI
21 Wang, T., Song, G., Wang, Z. and Li, Y. (2013b), "Proof-ofconcept study of monitoring bolt connection status using a piezoelectric based active sensing method", Smart Mater. Struct., 22(8), 087001. https://doi.org/10.1088/0964-1726/22/8/087001   DOI
22 Guan, M. and Liao, W.H. (2004), "Studies on the circuit models of piezoelectric ceramics", Proceedings of the IEEE International Conference on Information Acquisition, Hefei, China, June.
23 Fierro, G.P.M. and Meo, M. (2018), "IWSHM 2017: Structural health monitoring of the loosening in a multi-bolt structure using linear and modulated nonlinear ultrasound acoustic moments approach", Struct. Health Monit., 17(6), 1349-1364. https://doi.org/10.1177/1475921718806141   DOI
24 Giurgiutiu, V. and Zagrai, A.N. (2000), "Characterization of piezoelectric wafer active sensors", J. Intell. Mater. Syst. Struct., 11(12), 959-976. https://doi.org/10.1106/A1HU-23JD-M5AU-ENGW   DOI
25 Giurgiutiu, V. and Zagrai, A.N. (2002), "Embedded self-sensing piezoelectric active sensors for on-line structural identification", J. Vib. Acoust., 124(1), 116-125. https://doi.org/10.1115/1.1421056   DOI
26 Hey, F., Bhalla, S. and Soh, C.K. (2006), "Optimized parallel interrogation and protection of piezo-transducers in electromechanical impedance technique", J. Intell. Mater. Syst. Struct., 17(6), 457-468. https://doi.org/10.1177/1045389X06058792   DOI
27 Huo, L., Chen, D., Kong, Q., Li, H. and Song, G. (2017a), "Smart washer-a piezoceramic-based transducer to monitor looseness of bolted connection", Smart Mater. Struct., 26(2), 025033. https://doi.org/10.1088/1361-665X/26/2/025033   DOI
28 Zhou, D., Ha, D.S. and Inman, D.J. (2010), "Ultra low-power active wireless sensor for structural health monitoring", Smart Struct. Syst., Int. J., 6(5-6), 675-687. https://doi.org/10.12989/sss.2010.6.5_6.675   DOI
29 Wang, F., Ho, S.C.M. and Song, G. (2019), "Modeling and analysis of an impact-acoustic method for bolt looseness identification", Mech. Syst. Signal Pr., 133, 106249. https://doi.org/10.1016/j.ymssp.2019.106249   DOI
30 Wang, J., Shi, Z., Xiang, H. and Song, G. (2015), "Modeling on energy harvesting from a railway system using piezoelectric transducers", Smart Mater. Struct., 24(10), 105017.   DOI
31 Wu, A., He, S., Ren, Y., Wang, N., Ho, S.C.M. and Song, G. (2019), "Design of a new stress wave-based pulse position modulation (PPM) communication system with piezoceramic transducers", Sensors, 19(3), 558. https://doi.org/10.3390/s19030558   DOI
32 Xu, Y., Luo, M., Hei, C. and Song, G. (2018), "Quantitative evaluation of compactness of concrete-filled fiber-reinforced polymer tubes using piezoceramic transducers and time difference of arrival", Smart Mater. Struct., 27(3), 035023. https://doi.org/10.1088/1361-665X/aa9dd0   DOI
33 Yang, J. and Chang, F.K. (2006a), "Detection of bolt loosening in C-C composite thermal protection panels: I. Diagnostic principle", Smart Mater. Struct., 15(2), 581. https://doi.org/10.1088/0964-1726/15/2/041   DOI
34 Yang, J. and Chang, F.K. (2006b), "Detection of bolt loosening in C-C composite thermal protection panels: II. Experimental verification", Smart Mater. Struct., 15(2), 591. https://doi.org/10.1088/0964-1726/15/2/042   DOI
35 Huynh, T.C. and Kim, J.T. (2017), "Quantitative damage identification in tendon anchorage via PZT interface-based impedance monitoring technique", Smart Struct. Syst., Int. J., 20(2), 181-195. https://doi.org/10.1088/1361-665X/aa6e93
36 Huo, L., Chen, D., Liang, Y., Li, H., Feng, X. and Song, G. (2017b), "Impedance based bolt pre-load monitoring using piezoceramic smart washer", Smart Mater. Struct., 26(5), 057004. https://doi.org/10.1088/1361-665X/aa6a8e   DOI
37 Yang, Y., Liu, H. and Annamdas, V.G.M. (2009), "Wireless sensing using piezo-ceramic transducers for structural health monitoring", Proceedings of International Society for Optics and Photonics - Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace System, San Diego, CA, USA, April.
38 Yang, Y., Liu, H. and Annamdas, V.G.M. (2010), "Parallel and individual interrogations of piezo-impedance transducers for damage detection", Mater. Manuf. Processes, 25(4), 249-254. https://doi.org/10.1080/10426910903426398   DOI
39 Huo, L., Wang, F., Li, H. and Song, G. (2017c), "A fractal contact theory based model for bolted connection looseness monitoring using piezoceramic transducers", Smart Mater. Struct., 26(10), 104010.   DOI
40 Huo, L., Li, C., Jiang, T. and Li, H.N. (2018), "Feasibility study of steel bar corrosion monitoring using a piezoceramic transducer enabled time reversal method", Appl. Sci., 8(11), 2304. https://doi.org/10.3390/app8112304   DOI
41 Ihn, J.B. and Chang, F.K. (2008), "Pitch-catch active sensing methods in structural health monitoring for aircraft structures", Struct. Health Monit., 7(1), 5-19. https://doi.org/10.1177/1475921707081979   DOI
42 Jaffe, B. Cook, Jr. W.R. and Jaffe, H. (2012), Piezoelectric Ceramics, Academic Press Inc., Berkeley Square, London, UK.
43 Ji, Q., Ho, M., Zheng, R., Ding, Z. and Song, G. (2015), "An exploratory study of stress wave communication in concrete structures", Smart Struct. Syst., Int. J., 15(1), 135-150. https://doi.org/10.12989/sss.2015.15.1.135   DOI
44 Jiang, T., Kong, Q., Patil, D., Luo, Z., Huo, L. and Song, G. (2017), "Detection of debonding between fiber reinforced polymer bar and concrete structure using piezoceramic transducers and wavelet packet analysis", IEEE Sensors J., 17(7), 1992-1998. https://doi.org/10.1109/jsen.2017.2660301   DOI
45 Jiang, T.Y., Zhang, Y.W., Wang, L., Zhang, L. and Song, G.B. (2018), "Monitoring Fatigue Damage of Modular Bridge Expansion Joints Using Piezoceramic Transducers", Sensors, 18(11). https://doi.org/10.3390/s18113973   DOI
46 Zadoks, R.I. and Yu, X. (1997), "An investigation of the selfloosening behavior of bolts under transverse vibration", J. Sound Vib., 208(2), 189-209. https://doi.org/10.1006/jsvi.1997.1173   DOI
47 Yasui, H. and Kawashima, K. (2000), "Acoustoelastic Measurement of Bolt Axial Load with Hypothetical Velocity Ratio Method", Transact. Japan Soc. Mech. Engr., 66(642), 390-396.   DOI
48 Yin, H., Wang, T., Yang, D., Liu, S., Shao, J. and Li, Y. (2016), "A smart washer for bolt looseness monitoring based on piezoelectric active sensing method", Appl. Sci., 6(11), 320. https://doi.org/10.3390/app6110320   DOI
49 Yuan, R., Lv, Y., Kong, Q. and Song, G. (2019), "Percussion-based bolt looseness monitoring using intrinsic multiscale entropy analysis and BP neural network", Smart Mater. Struct., 28, 125001. https://doi.org/10.1088/1361-665X/ab3b39   DOI
50 Zagrai, A.N. and Giurgiutiu, V. (2001), "Electro-mechanical impedance method for crack detection in thin plates", J. Intell. Mater. Syst. Struct., 12(10), 709-718. https://doi.org/10.1177/104538901320560355   DOI
51 Zheng, Y., Chen, D., Zhou, L., Huo, L., Ma, H. and Song, G. (2018), "Evaluation of the effect of fly ash on hydration characterization in self-compacting concrete (SCC) at very early ages using piezoceramic transducers", Sensors, 18(8), 2489. https://doi.org/10.3390/s18082489   DOI
52 Park, S., Yun, C.B., Roh, Y. and Lee, J. (2005), "Health monitoring of steel structures using impedance of thickness modes at PZT patches", Smart Struct. Syst., Int. J., 1(4), 339-353. https://doi.org/10.12989/sss.2005.1.4.339   DOI
53 Park, G. and Inman, D.J. (2006), "Structural health monitoring using piezoelectric impedance measurements", Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365(1851), 373-392. https://doi.org/10.1098/rsta.2006.1934   DOI
54 Park, G., Kabeya, K., Cudney, H.H. and Inman, D.J. (1999), "Impedance-based structural health monitoring for temperature varying applications", JSME Int. J. Series A Solid Mech. Mater. Eng., 42(2), 249-258. https://doi.org/10.1299/jsmea.42.249   DOI
55 Park, G., Cudney, H.H. and Inman, D.J. (2001), "Feasibility of using impedance-based damage assessment for pipeline structures", Earthq. Eng. Struct. Dyn., 30(10), 1463-1474. https://doi.org/10.1002/eqe.72   DOI
56 Park, H.W., Sohn, H., Law, K.H. and Farrar, C.R. (2007), "Time reversal active sensing for health monitoring of a composite plate", J. Sound Vib., 302(1-2), 50-66. https://doi.org/10.1016/j.jsv.2006.10.044   DOI
57 Peng, J., Xiao, L., Zhang, J., Cai, C.S. and Wang, L. (2019), "Flexural behavior of corroded HPS beams", Eng. Struct., 195, 274-287. https://doi.org/10.1016/j.engstruct.2019.06.006   DOI
58 Priya, C.B., Saravanan, T.J., Balamonica, K., Gopalakrishnan, N. and Rao, A.R.M. (2018), "EMI based monitoring of early-age characteristics of concrete and comparison of serial/parallel multi-sensing technique", Constr. Build. Mater., 191, 1268-1284. https://doi.org/10.1016/j.conbuildmat.2018.10.079   DOI
59 Razi, P., Esmaeel, R.A. and Taheri, F. (2013), "Improvement of a vibration-based damage detection approach for health monitoring of bolted flange joints in pipelines", Struct. Health Monit., 12(3), 207-224. https://doi.org/10.1177/1475921713479641   DOI
60 Amerini, F. and Meo, M. (2011), "Structural health monitoring of bolted joints using linear and nonlinear acoustic/ultrasound methods", Struct. Health Monit., 10(6), 659-672. https://doi.org/10.1177/1475921710395810   DOI
61 Kong, Q., Zhu, J., Ho, M. and Song, G. (2018), "Tapping and Listening: a New Approach to Bolt Looseness Monitoring", Smart Mater. Struct., 27(7), 07LT02. https://doi.org/10.1088/1361-665X/aac962   DOI
62 Annamdas, V.G. and Radhika, M.A. (2013), "Electromechanical impedance of piezoelectric transducers for monitoring metallic and non-metallic structures: A review of wired, wireless and energy-harvesting methods", J. Intell. Mater. Syst. Struct., 24(9), 1021-1042. https://doi.org/10.1177/1045389X13481254   DOI
63 Ayres, J.W., Lalande, F., Chaudhry, Z. and Rogers, C.A. (1998), "Qualitative impedance-based health monitoring of civil infrastructures", Smart Mater. Struct., 7(5), 599. https://doi.org/10.1088/0964-1726/7/5/004   DOI
64 Karayannis, C.G., Voutetaki, M.E., Chalioris, C.E., Providakis, C.P. and Angeli, G.M. (2015), "Detection of flexural damage stages for RC beams using Piezoelectric sensors (PZT)", Smart Struct. Syst., Int. J., 15(4), 997-1018. https://doi.org/10.12989/sss.2015.15.4.997   DOI
65 Khomenko, A., Koricho, E.G., Haq, M. and Cloud, G.L. (2015), "Bolt tension monitoring with reusable fiber Bragg-grating sensors", J. Strain Anal. Eng. Des., 51(2), 101-108. https://doi.org/10.1177/0309324715598265   DOI
66 Kim, J., Grisso, B.L., Kim, J.K., Ha, D.S. and Inman, D.J. (2008), "Electrical modeling of piezoelectric ceramics for analysis and evaluation of sensory systems", Proceedings of the IEEE Sensors Applications Symposium, Atlanta, GA, USA, February.
67 Li, W., Fan, S., Ho, S.C.M., Wu, J. and Song, G. (2018), "Interfacial debonding detection in fiber-reinforced polymer rebar-reinforced concrete using electro-mechanical impedance technique", Struct. Health Monit., 17(3), 461-471. https://doi.org/10.1177/1475921716678922   DOI
68 Li, W., Liu, T., Zou, D., Wang, J., and Yi, T.H. (2019), "PZT based smart corrosion coupon using electromechanical impedance", Mech. Syst. Signal Pr., 129, 455-469. https://doi.org/10.1016/j.ymssp.2019.04.049   DOI
69 Liang, C., Sun, F. and Rogers, C. (1997), "Coupled electromechanical analysis of adaptive material systems-determination of the actuator power consumption and system energy transfer", J. Intell. Mater. Syst. Struct., 8(4), 335-343. https://doi.org/10.1177/1045389X9700800406   DOI
70 Lim, Y.Y., Bhalla, S. and Soh, C.K. (2006), "Structural identification and damage diagnosis using self sensing piezoimpedance transducers", Smart Mater. Struct., 15(4), 987. https://doi.org/10.1088/0964-1726/15/4/012   DOI
71 Shao, J., Wang, T., Yin, H., Yang, D. and Li, Y. (2016), "Bolt looseness detection based on piezoelectric impedance frequency shift", Appl. Sci., 6(10), 298. https://doi.org/10.3390/app6100298   DOI
72 Ren, L., Feng, T.Z., Ho, M., Jiang, T. and Song, G.B. (2018), "A smart "shear sensing" bolt based on FBG sensors", Measurement, 122, 240-246. https://doi.org/10.1016/j.measurement.2018.03.026   DOI
73 Ritdumrongkul, S., Abe, M., Fujino, Y. and Miyashita, T. (2003), "Quantitative health monitoring of bolted joints using a piezoceramic actuator-sensor", Smart Mater. Struct., 13(1), 20. https://doi.org/10.1088/0964-1726/13/1/003   DOI
74 Ruan, J., Zhang, Z., Wang, T., Li, Y. and Song, G. (2015), "An anti-noise real-time cross-correlation method for bolted joint monitoring using piezoceramic transducers", Smart Struct. Syst., Int. J., 16(2), 281-294. https://doi.org/10.12989/sss.2015.16.2.281   DOI
75 Sherrit, S., Wiederick, H. and Mukherjee, B. (1997), "Accurate equivalent circuits for unloaded piezoelectric resonators", Proceedings of the IEEE Ultrasonics Symposium, Toronto, Canada, October.
76 Siu, S., Ji, Q., Wu, W., Song, G. and Ding, Z. (2014a), "Stress wave communication in concrete: I. Characterization of a smart aggregate based concrete channel", Smart Mater. Struct., 23(12), 125030. https://doi.org/10.1088/0964-1726/23/12/125030   DOI
77 Siu, S., Qing, J., Wang, K., Song, G. and Ding, Z. (2014b), "Stress wave communication in concrete: II. Evaluation of low voltage concrete stress wave communications utilizing spectrally efficient modulation schemes with PZT transducers", Smart Mater. Struct., 23(12), 125031. https://doi.org/10.1088/0964-1726/23/12/125031   DOI
78 Sodano, H.A., Inman, D.J. and Park, G. (2005), "Comparison of piezoelectric energy harvesting devices for recharging batteries", J. Intell. Mater. Syst. Struct., 16(10), 799-807. https://doi.org/10.1177/1045389X05056681   DOI
79 Liu, T., Zou, D., Du, C. and Wang, Y. (2017), "Influence of axial loads on the health monitoring of concrete structures using embedded piezoelectric transducers", Struct. Health Monit., 16(2), 202-214. https://doi.org/10.1177/1475921716670573   DOI
80 Liu, T., Huang, Y., Zou, D., Teng, J. and Li, B. (2013), "Exploratory study on water seepage monitoring of concrete structures using piezoceramic based smart aggregates", Smart Mater. Struct., 22(6), 065002. https://doi.org/10.1088/0964-1726/22/6/065002   DOI
81 Lu, G.T., Li, Y.R., Zhou, M.L., Feng, Q. and Song, G.B. (2018), "Detecting Damage Size and Shape in a Plate Structure Using PZT Transducer Array", J. Aerosp. Eng., 31(5), 04018075. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000904   DOI
82 Mascarenas, D.D., Park, G. and Farrar, C.R. (2005), "Monitoring of bolt preload using piezoelectric active devices", Proceedings of SPIE - The International Society for Optical Engineering, San Diego, CA, USA, May.
83 Mascarenas, D.L., Todd, M.D., Park, G. and Farrar, C.R. (2007), "Development of an impedance-based wireless sensor node for structural health monitoring", Smart Mater. Struct., 16(6), 2137. https://doi.org/10.1088/0964-1726/16/6/016   DOI
84 Na, W.S. (2017), "Possibility of Detecting Wall Thickness Loss using a PZT based Structural Health Monitoring Method for Metal Based Pipeline Facilities", NDT&E Int., 88, 42-50. https://doi.org/10.1016/j.ndteint.2017.03.001   DOI
85 Na, S. and Lee, H.K. (2013), "A multi-sensing electromechanical impedance method for non-destructive evaluation of metallic structures", Smart Mater. Struct., 22(9), 095011. https://doi.org/10.1088/0964-1726/22/9/095011   DOI
86 Negi, P., Chakraborty, T., Kaur, N. and Bhalla, S. (2018), "Investigations on effectiveness of embedded PZT patches at varying orientations for monitoring concrete hydration using EMI technique", Constr. Build. Mater., 169, 489-498. https://doi.org/10.1016/j.conbuildmat.2018.03.006   DOI