• Title/Summary/Keyword: impedance change

Search Result 453, Processing Time 0.027 seconds

Review on Bioelectrical Impedance Analysis in Traditional East Asian Medicine (생체 전기 임피던스 분석의 한의학적 적용을 위한 연구동향)

  • Bae, Jang Han;Kim, Young Min;Kim, Keun Ho;Kim, Jaeuk
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.27 no.6
    • /
    • pp.717-729
    • /
    • 2013
  • Bioelectrical Impedance Analysis (BIA) is a non-invasive and low-cost technique that estimates body composition based on the distribution of water and electrolytes in the body by analyzing body's electrical responses to source voltages. In this work, we carried out a systematic literature review on BIA researches in traditional East Asian medicine (TEAM). For comparison, firstly we introduced the concept and principle of BIA, and offered a general overview of research trends in western medical perspectives. We searched through the databases of Oriental Medicine Advanced Searching Integrated System and DataBase Periodical Information Academic for the articles published between 1994 and 2013, with keywords such as 'BIA', 'bioelectrical impedance' and 'impedance'. Among the rough-searched 274 articles, we finally selected 21 articles appropriate to the intended research field. The selected articles were categorized into diagnosis in Sasang medicine, impedance analysis in meridian system, and change of body composition after taking herbal medicine. We found that most of BIA researches in TEAM were preliminary and remained in the peripheral levels which is far behind the western medical research activities. Therefore, more efforts are needed to study BIA in association with major subjects such as pattern identification or physiological/pathological phenomena. In addition, methodological breakthrough of BIA is possible by applying the diagnostic concepts of the TEAM in relation to the balance of Qi and Blood.

Portable arousal measurement and analysis system (휴대형 각성도 측정 및 분석 시스템)

  • Ko, H.W.;Kim, Y.H.;Kim, C.J.;Lee, G.K.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.05
    • /
    • pp.60-64
    • /
    • 1996
  • This paper describes the development of portable arousal measurement and analysis system. Skin impedance change which responds the change of arousal level was detected by the three electrode constant current method and separated into two components (SIR, SIL). Relationship between Nz, IRI and arousal level was studied and Criteria of arousal level control was decided by the sleep study.

  • PDF

Variation of AC Impedance of the $TiS_2$ Composite/SPE/Li Cell with Cycling ($TiS_2$ Composite/SPE/Li Cell의 충방전에 따른 AC 임피던스의 변화)

  • Kim, J.U.;Gu, H.B.;Moon, S.I.;Yun, M.S.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1034-1038
    • /
    • 1995
  • The purpose of this study is to research and develop $TiS_2$ composite cathode for lithium polymer battery(LPB). $TiS_2$ electrode represent a class of insertion positive electrode used in Li secondary batteries. In this study, we investigated preparation of $TiS_2$ composite cathode and AC impedance response of $TiS_2$ composite/SPE/Li cells as a function of state of charge(SOC) and cycling. The resistance of B type cell using $TiS_2PEO_8LiClO_4PC_5EC_5$ composite cathode was lower than that of A type cell using $TiS_2PEO$ composite cathode. The cell resistance of B type cell is high for the first few percent discharge, decreases for midium discharge and then increases again toward the end of discharge. We believe the magnitude of the cell resistance is dominated by passivation layer impedance and small cathode resistance. AC impedance results indicate that the cell internal resistance increase with cycling, and this is attributed to change of passivation layer impedance with cycling. The passivation layer resistance($R_f$) of B type cell decreases for the 2nd cycling and then increases again with cycling. Redox coulombic efficiency of B type cell was about 141% at 1st cycle and 100% at 12th cycle. Also, $TiS_2$ specific capacity was 115 mAh/g at 12 cycle.

  • PDF

Development & Evaluation of acupuncture Point Impedance Measurement System Using 12 Channels Multi-Frequency (12채널 Multi-frequency를 이용한 경혈 임피던스 측정시스템 개발 및 평가)

  • Kim, Soo-Byeong;Lee, Jae-Woo;Lee, Seung-Wook;Lee, Na-Ra;Kim, Young-Dae;Shin, Tae-Min;Lee, Yong-Heum
    • Korean Journal of Acupuncture
    • /
    • v.28 no.1
    • /
    • pp.1-13
    • /
    • 2011
  • Objectives : The object of this study is to evaluate and develop the system that reflects acupoints electrical properties by the multi-frequency using the SPAC (Single Power Alternative Current) stimulation method based on BIA (Bioelectrical impedance method). Methods : The 12 channel meridian impedance measurement system (MIMS) was designed, which sets multi-frequency with 10 steps (1~10kHz). To check acupoints electrical properties, impedance of acupoints were measured from 11 acupoints selected from the LU and ST meridians. Results : Regarding distribution of measurement values by multi-frequencies, we found the lowest response at 1kHz was in common. But frequency bands which represent the highest response at each acupoint were various. Measurement values of each acupoint by multi-frequencies were expressed similar distribution (P<0.05). Also we could check same frequency band which showed the highest response at left/right equal acupoints (P<0.05). Conclusions : Through change of acupoints electrical properties by multi-frequency stimulation, we checked oriental medical diagnostic possibilities by using this system. We would progress variable clinical trials with this system for oriental medical diagnosis.

Magnetic Field Sensors using Co-base Amorphous Ribbon (Co계 아몰퍼스리본을 이용한 자계센서)

  • Shin, Kwang-Ho;Park, Kyung-Il;Song, Jae-Yeon;Kim, Young-Hak;SaGong, Geon
    • Journal of Sensor Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.205-210
    • /
    • 2003
  • To develop the highly sensitive Magneto-Impedance sensor, the amorphous ribbon was micro-processed to meander type sensor pattern, and its external magnetic field dependence of impedance was investigated. The impedance of the pattern had peak value at the magnetic field of 13 Oe and its changing ratio was about 170%. The impedance change per unit magnetic field was about 36% at bias field of 6 Oe, in which the output with high sensitivity and linearity could be obtained. The magnetic field resolution of the sensor module, which consist of the amorphous pattern and driving circuit, was about $10^{-3}$ Oe.

Experimental and clinical studies with impedance audiometry; the increase in air volume in the middle ear air system and the pneumatization of human temporal bones (측두골의 함기도와 중이강의 용적이 고막 임피던스에 미치는 영향에 관한 연구)

  • 민양기
    • Proceedings of the KOR-BRONCHOESO Conference
    • /
    • 1977.06a
    • /
    • pp.4.4-5
    • /
    • 1977
  • The vibratory energy introduced into the external ear canal is changed by the mechanical factors of eardrum itself, the motility of ossicles, and the air cushion of tympanic cavity and the like. This study was designed to investigate the volume of middle ear cavity and mastoid air cell system as a factor of determining the accoustic impedance of middle ear system. The author studied how the increase in air volume of middle ear cavity effects on the acoustic impedance of middle ear system with dogs' ears and researched the correlation between the degree of pneumatization of temporal bones and the acoustic impedance of middle ear system by comparing the radiological findings of pneumatization (Law's and Towne's projection) with the acoustic impedance measurements with Madsen ZO 70. The result is as follows: 1 The tympanometric findings in control state revealed the curves of type A, and did not change in its configuration by the increase in the air volume of dogs middle ear system. 2. The static compliance of middle ear revealed a distinct and linear increase in proportion to the increase in air volume of middle ear system; the rate of increase was $0.05{\pm}0.02$ cc of static compliance per cc of air volume. 3. Authenticated in the above result and the tendency to increase in static compliance in proportion to the increase in the degree of pneumatization of temporal bones, there was significant regression equation between the degree of pneumatization of temporal bones (x variable) and the static compliance of middle ear system; $y=0.19x{\pm}0.16{\pm}0.05$ It is suggested that the difference in volume of middle ear system plays an important role in the change of the static compliance of middle ear, and the author concludes that the measurement of static compliance of middle ear has clinical value as diagnostic means of evaluating the degree of pneumatization of temporal bones along with some radiological examination.

  • PDF

Development of an Active Dry EEG Electrode Using an Impedance-Converting Circuit (임피던스 변환 회로를 이용한 건식능동뇌파전극 개발)

  • Ko, Deok-Won;Lee, Gwan-Taek;Kim, Sung-Min;Lee, Chany;Jung, Young-Jin;Im, Chang-Hwan;Jung, Ki-Young
    • Annals of Clinical Neurophysiology
    • /
    • v.13 no.2
    • /
    • pp.80-86
    • /
    • 2011
  • Background: A dry-type electrode is an alternative to the conventional wet-type electrode, because it can be applied without any skin preparation, such as a conductive electrolyte. However, because a dry-type electrode without electrolyte has high electrode-to-skin impedance, an impedance-converting amplifier is typically used to minimize the distortion of the bioelectric signal. In this study, we developed an active dry electroencephalography (EEG) electrode using an impedance converter, and compared its performance with a conventional Ag/AgCl EEG electrode. Methods: We developed an active dry electrode with an impedance converter using a chopper-stabilized operational amplifier. Two electrodes, a conventional Ag/AgCl electrode and our active electrode, were used to acquire EEG signals simultaneously, and the performance was tested in terms of (1) the electrode impedance, (2) raw data quality, and (3) the robustness of any artifacts. Results: The contact impedance of the developed electrode was lower than that of the Ag/AgCl electrode ($0.3{\pm}0.1$ vs. $2.7{\pm}0.7\;k{\Omega}$, respectively). The EEG signal and power spectrum were similar for both electrodes. Additionally, our electrode had a lower 60-Hz component than the Ag/AgCl electrode (16.64 vs. 24.33 dB, respectively). The change in potential of the developed electrode with a physical stimulus was lower than for the Ag/AgCl electrode ($58.7{\pm}30.6$ vs. $81.0{\pm}19.1\;{\mu}V$, respectively), and the difference was close to statistical significance (P=0.07). Conclusions: Our electrode can be used to replace Ag/AgCl electrodes, when EEG recording is emergently required, such as in emergency rooms or in intensive care units.

Gysel 3:1 variable power divider using the dual characteristic impedance transmission line (이중 특성 임피던스 선로를 이용한 Gysel 3:1 가변 전력분배기)

  • Park, Ung-hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.10
    • /
    • pp.1409-1415
    • /
    • 2021
  • The Gysel divider has the advantage of easily setting the resistor in the circuit. If the line impedance in the Gysel divider is set differently, the input signal can be distributed to the two output ports at various distribution ratios. This paper proposes the Gysel divider that can change the power distribution to 1:3 or 3:1 by changing the line impedance. The impedance change of the line can be implemented by placing a floating copper plate on the bottom of the microstrip-line. When the floating copper plate and the ground plane are connected, the line operates as the microstrip-line, and when the floating copper plate and the ground plane are disconnected, the line operates as the coplanar-line. The proposed Gysel divider was fabricated at the center frequency of 1.5GHz. The fabricated 3:1 Gysel divider has a stable value S11 of below -17dB, S21/S31 of 4.8±0.2dB, S21(to high output port) of -1.39±0.12dB and S31(to low output port) of -6.15±0.08dB over 1.3~1.7GHz.

Study on the Surface Reactions of Graphite Electrodes by Anodic Polarization (양극분극에 의한 흑연전극의 계면반응에 대한 연구)

  • 오한준;김인기;이종호;이영훈
    • Journal of the Korean Chemical Society
    • /
    • v.41 no.1
    • /
    • pp.1-11
    • /
    • 1997
  • Electrode surface reaction on three carbon materials(glassy carbon, synthesized graphite, graphite foil) in 0.5 M K2SO4 electrolyte is investigated by impedance spectroscopy during anodic polarization. The double layer capacitance of the graphite foil electrode is relatively higher than that of other two materials. The change of capacitance parameter C due to chemical adsorption on glassy carbon and synthesized graphite(PVDF graphite) is observed in 0.5 M K2SO4 solution at anodic polarization. In general, the faradic impedance on glassy carbon depends on anodic polarization, and the change of impedance parameter on graphite foil at anodic polarization is not remarkable, because this reaction is controlled by field transport.

  • PDF

Characteristics of Coaxial Typed Magnetic Sensor Using Amorphous Wire (자성와이어를 이용한 동축케이블형 자계센서의 특성)

  • Kim, Y.H.
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.2
    • /
    • pp.55-59
    • /
    • 2007
  • Co-based amorphous magnetic wire with a diameter of $125{\mu}m$ and a length of 40 mm was used as an inner conductor of a coaxial cable to construct a magnetic sensor. Sensor characteristics was measured up to 3 GHz with applied up to 60 Oe by using network analyzer. Frequency dependence of impedance for this sensor was very close to the impedance resonant pattern of transmission line and 250 MHz was obtained as a 1/4 wavelength without external magnetic field. Large impedance change was measured in the magnetic field range between 0 Oe and 1 Oe, which was influenced by permeability change of magnetic amorphous wire. Because ${\Delta}Z/{\Delta}H$ value of $300{\Omega}/Oe$ was obtained at 0.1 Oe, this coaxial cable with amorphous wire can be useful as a magnetic sensor.