• 제목/요약/키워드: impact stresses

검색결과 253건 처리시간 0.022초

HSB600강 GMA 용접부에서 입열량과 용접후 열처리가 미세조직과 기계적 특성에 미치는 영향 (The effect of Heat input and PWHT on the microstructure and mechanical properties of HSB600 steel weldments)

  • 고진현;김남훈;장복수;주동휘;임영민
    • 한국산학기술학회논문지
    • /
    • 제12권12호
    • /
    • pp.5405-5411
    • /
    • 2011
  • 본 연구에서는 교량용 구조용 강재인 HSB600 강의 용접부에서 입열량 (1.5~3.6 kJ/mm)과 용접후 열처리(PWHT, $600^{\circ}C$, 40hr.)가 미세조직과 기계적 특성에 미치는 영향에 관해 연구하였다. HSB600 강재를 GMA용접을 실시하였다. 용접된 상태에서는 인장강도와 경도는 입열량이 증가할수록 저하되었으며 충격 흡수 에너지는 큰 차이를 보이지 않았다. 낮은 입열량인 1.5 kJ/mm에서 침상형 페라이트가 가장 많이 생성되었다. 용접후 열처리를 통해 경도와 인장강도가 저하되었고, 용착금속의 충격흡수에너지가 증가되었다.

쇄빙선 강재의 내충격 특성에 관한 실험적 연구: 제1부 강재 특성 (Study on Crashworthiness of Icebreaker Steel: Part I Steel Properties)

  • 노명현;이재익;박성주;정준모
    • 한국해양공학회지
    • /
    • 제30권4호
    • /
    • pp.268-276
    • /
    • 2016
  • This paper presents a study on the crashworthiness of the scaled-down stiffened panels used on a Korean icebreaker. In order to validate the crashworthiness of the panels, this paper provides various mechanical properties such as the results of a CVN test, quasi-static tensile test, and high-speed tensile test at arctic temperatures. Two types of steels (EH32 and FH32) were chosen for the material tests. CVN tests revealed that the two steels were equivalent up to −60℃ in terms of their impact energy absorption capacity. However, the toughness of FH32 was significantly superior to that of EH32. EH32 showed slightly higher flow stresses at all temperature levels compared to FH32. The improvement ratios of the yield strengths, tensile strengths, plastic hardening exponents, etc. for FH32, which were obtained from quasi-static tensile tests, showed an apparent ascending tendency with a decrease in temperature. Dynamic tensile test results were obtained for the two temperatures levels of 20℃ and −60℃ with two plastic strain rate levels of 1 s−1 and 100 s−1. A closed form empirical formula proposed by Choung et al. (2011;2013) was shown to be effective at predicting the flow stress increase due to a strain rate increase.

액상가압공정으로 제조된 STS304와 Ta 섬유 강화 Zr계 비정질 복합재료의 준정적 및 동적 변형거동 (Quasi-Static and Dynamic Deformation Behavior of STS304- and Ta-fiber-reinforced Zr-based Amorphous Matrix Composites Fabricated by Liquid Pressing Process)

  • 김용진;신상용;김진성;허훈;김기종;이성학
    • 대한금속재료학회지
    • /
    • 제48권6호
    • /
    • pp.477-488
    • /
    • 2010
  • Zr-based amorphous alloy matrix composites reinforced with stainless steel (STS) and tantalum continuous fibers were fabricated without pores or defects by a liquid pressing process, and their quasi-static and dynamic deformation behaviors were investigated by using a universal testing machine and a Split Hopkinson pressure bar, respectively. The quasi-static compressive test results indicated that the fiberreinforced composites showed amaximum strength of about 1050~1300 MPa, and its strength maintained over 700 MPa until reaching astrain of 40%. Under dynamic loading, the maximum stresses of the composites were considerably higher than those under quasi-static loading because of the strain-rate hardening effect, whereas the fracture strains were considerably lower than those under quasi-static loading because of the decreased resistance to fracture. The STS-fiber-reinforced composite showed a greater compressive strength and ductility under dynamic loading than the tantalum-fiber-reinforced composite because of the excellent resistance to fracture of STS fibers.

치위생(학)과 재학생의 영성이 임상실습 스트레스에 미치는 영향 (Impact of Spirituality on Clinical Practice among Dental Hygiene Students)

  • 오나래;김해경
    • 한국콘텐츠학회논문지
    • /
    • 제19권10호
    • /
    • pp.463-471
    • /
    • 2019
  • 본 연구는 치위생과 학생들의 영성을 알아보고 영성이 임상실습 시 발생할 수 있는 스트레스에 영향을 미치는가에 대하여 조사하였다. 연구도구는 영성, 임상실습스트레스, 일반적 특성으로 구성하였으며, 설문조사는 K지역에 위치한 치위생과 재학생 280명을 대상으로 2019년 3월부터 7월까지 이루어졌다. 자료분석은 일반적 특성에 따른 영성과 임상실습스트레스의 차이는 t-test, ANOVA를 실시하였으며 영성과 임상실습 스트레스 간의 상관관계는 Pearson correlation coefficients로 분석하였다. 그 결과 치위생과 재학생의 임상실습 스트레스는 영성, 전공만족도, 학과성적과 부적 상관관계가 있었고 학과에 지원한 동기가 성적일 경우 임상실습 스트레스가 다소 높은 것으로 나타났다. 본 연구의 제한점은 치위생과 재학생의 영성에 대한 선행연구가 미비하여 구체적 비교가 불가능하다는 것이다. 따라서 치위생과재학생에 대한 영성과 임상실습스트레스에 대한 다양한 연구와 이에 대처할 전략적 모색이 필요할 것이라 사료된다.

Computational analysis of the electromechanical performance of mitral valve cerclage annuloplasty using a patient-specific ventricular model

  • Lee, Kyung Eun;Kim, Ki Tae;Lee, Jong Ho;Jung, Sujin;Kim, June-Hong;Shim, Eun Bo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제23권1호
    • /
    • pp.63-70
    • /
    • 2019
  • We aimed to propose a novel computational approach to predict the electromechanical performance of pre- and post-mitral valve cerclage annuloplasty (MVCA). Furthermore, we tested a virtual estimation method to optimize the left ventricular basement tightening scheme using a pre-MVCA computer model. The present model combines the three-dimensional (3D) electromechanics of the ventricles with the vascular hemodynamics implemented in a lumped parameter model. 3D models of pre- and post-MVCA were reconstructed from the computed tomography (CT) images of two patients and simulated by solving the electromechanical-governing equations with the finite element method. Computed results indicate that reduction of the dilated heart chambers volume (reverse remodeling) appears to be dependent on ventricular stress distribution. Reduced ventricular stresses in the basement after MVCA treatment were observed in the patients who showed reverse remodeling of heart during follow up over 6 months. In the case who failed to show reverse remodeling after MVCA, more virtual tightening of the ventricular basement diameter than the actual model can induce stress unloading, aiding in heart recovery. The simulation result that virtual tightening of the ventricular basement resulted in a marked increase of myocardial stress unloading provides in silico evidence for a functional impact of MVCA treatment on cardiac mechanics and post-operative heart recovery. This technique contributes to establishing a pre-operative virtual rehearsal procedure before MVCA treatment by using patient-specific cardiac electromechanical modeling of pre-MVCA.

Geomechanical assessment of reservoir and caprock in CO2 storage: A coupled THM simulation

  • Taghizadeh, Roohollah;Goshtasbi, Kamran;Manshad, Abbas Khaksar;Ahangari, Kaveh
    • Advances in Energy Research
    • /
    • 제6권1호
    • /
    • pp.75-90
    • /
    • 2019
  • Anthropogenic greenhouse gas emissions are rising rapidly despite efforts to curb release of such gases. One long term potential solution to offset these destructive emissions is the capture and storage of carbon dioxide. Partially depleted hydrocarbon reservoirs are attractive targets for permanent carbon dioxide disposal due to proven storage capacity and seal integrity, existing infrastructure. Optimum well completion design in depleted reservoirs requires understanding of prominent geomechanics issues with regard to rock-fluid interaction effects. Geomechanics plays a crucial role in the selection, design and operation of a storage facility and can improve the engineering performance, maintain safety and minimize environmental impact. In this paper, an integrated geomechanics workflow to evaluate reservoir caprock integrity is presented. This method integrates a reservoir simulation that typically computes variation in the reservoir pressure and temperature with geomechanical simulation which calculates variation in stresses. Coupling between these simulation modules is performed iteratively which in each simulation cycle, time dependent reservoir pressure and temperature obtained from three dimensional compositional reservoir models in ECLIPSE were transferred into finite element reservoir geomechanical models in ABAQUS and new porosity and permeability are obtained using volumetric strains for the next analysis step. Finally, efficiency of this approach is demonstrated through a case study of oil production and subsequent carbon storage in an oil reservoir. The methodology and overall workflow presented in this paper are expected to assist engineers with geomechanical assessments for reservoir optimum production and gas injection design for both natural gas and carbon dioxide storage in depleted reservoirs.

타워크레인 텔레스코핑 작업의 풍속 및 하중에 대한 구조 안전성 연구 (A Study on the Structural Safety of Tower Crane Telescoping Work according to Wind Speed and Load)

  • 정성룡;이도근;백신원;신상연
    • 한국안전학회지
    • /
    • 제36권1호
    • /
    • pp.9-17
    • /
    • 2021
  • This study analyses the load imbalance of the tower crane used in telescoping work for structural safety, owing to the difference in wind speed and balance weight position. This is because wind speed and position of the balance weight have a significant impact on the structural stresses of a tower crane during telescoping work. Therefore, structural analysis was performed on the 290HC model, which is often used at construction sites and has only one cylinder installed. Moreover, two models were classified to determine the load acting on the connecting part of the telescopic cage to slewing platform and the cylinder. Five types of balance weight positions were applied at regular intervals from jibs; moreover, four types of wind load criteria were differently applied. Hence, the telescopic cage columns were destroyed at all balance weight positions at a wind speed of 30 m/s and only at certain locations at a wind speed of 20 m/s. Furthermore, failures occurred for cylinders, torsional, and bending at wind speeds of 30 m/s and 20 m/s, load imbalances above the allowable thresholds considering the safety factor. In addition, the load imbalance in the telescoping work also varied depending on the position of the balance weights. The results of these studies have validated that the current standards of adjusting the appropriate position of the balance weights on the jib are completely valid, with the telescoping work to be executed only at wind speeds of less than equal to 10 m/s.

Coupled effect of variable Winkler-Pasternak foundations on bending behavior of FG plates exposed to several types of loading

  • Himeur, Nabil;Mamen, Belgacem;Benguediab, Soumia;Bouhadra, Abdelhakim;Menasria, Abderrahmane;Bouchouicha, Benattou;Bourada, Fouad;Benguediab, Mohamed;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • 제44권3호
    • /
    • pp.353-369
    • /
    • 2022
  • This study attempts to shed light on the coupled impact of types of loading, thickness stretching, and types of variation of Winkler-Pasternak foundations on the flexural behavior of simply- supported FG plates according to the new quasi-3D high order shear deformation theory, including integral terms. A new function sheep is used in the present work. In particular, both Winkler and Pasternak layers are non-uniform and vary along the plate length direction. In addition, the interaction between the loading type and the variation of Winkler-Pasternak foundation parameters is considered and involved in the governing equilibrium equations. Using the virtual displacement principle and Navier's solution technique, the numerical results of non-dimensional stresses and displacements are computed. Finally, the non-dimensional formulas' results are validated with the existing literature, and excellent agreement is detected between the results. More importantly, several complementary parametric studies with the effect of various geometric and material factors are examined. The present analytical model is suitable for investigating the bending of simply-supported FGM plates for special technical engineering applications.

A computational investigation on flexural response of laminated composite plates using a simple quasi-3D HSDT

  • Draiche, Kada;Selim, Mahmoud M.;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Bourada, Fouad;Tounsi, Abdeldjebbar;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • 제41권5호
    • /
    • pp.697-711
    • /
    • 2021
  • In this work, a simple quasi 3-D parabolic shear deformation theory is developed to examine the bending response of antisymmetric cross-ply laminated composite plates under different types of mechanical loading. The main feature of this theory is that, in addition to including the transverse shear deformation and thickness stretching effects, it has only five-unknown variables in the displacement field modeling like Mindlin's theory (FSDT), yet satisfies the zero shear stress conditions on the top and bottom surfaces of the plate without requiring a shear correction factor. The static version of principle of virtual work was employed to derive the governing equations, while the bending problem for simply supported antisymmetric cross-ply laminated plates was solved by a Navier-type closed-form solution procedure. The adequacy of the proposed model is handled by considering the impact of side-to-thickness ratio on bending response of plate through several illustrative examples. Comparison of the obtained numerical results with the other shear deformation theories leads to the conclusion that the present model is more accurate and efficient in predicting the displacements and stresses of laminated composite plates.

Bending of axially functionally graded carbon nanotubes reinforced composite nanobeams

  • Ahmed Drai;Ahmed Amine Daikh;Mohamed Oujedi Belarbi;Mohammed Sid Ahmed Houari;Benoumer Aour;Amin Hamdi;Mohamed A. Eltaher
    • Advances in nano research
    • /
    • 제14권3호
    • /
    • pp.211-224
    • /
    • 2023
  • This work presents a modified analytical model for the bending behavior of axially functionally graded (AFG) carbon nanotubes reinforced composite (CNTRC) nanobeams. New higher order shear deformation beam theory is exploited to satisfy parabolic variation of shear through thickness direction and zero shears at the bottom and top surfaces.A Modified continuum nonlocal strain gradient theoryis employed to include the microstructure and the geometrical nano-size length scales. The extended rule of the mixture and the molecular dynamics simulations are exploited to evaluate the equivalent mechanical properties of FG-CNTRC beams. Carbon nanotubes reinforcements are distributed axially through the beam length direction with a new power graded function with two parameters. The equilibrium equations are derived with associated nonclassical boundary conditions, and Navier's procedure are used to solve the obtained differential equation and get the response of nanobeam under uniform, linear, or sinusoidal mechanical loadings. Numerical results are carried out to investigate the impact of inhomogeneity parameters, geometrical parameters, loadings type, nonlocal and length scale parameters on deflections and stresses of the AFG CNTRC nanobeams. The proposed model can be used in the design and analysis of MEMS and NEMS systems fabricated from carbon nanotubes reinforced composite nanobeam.