DOI QR코드

DOI QR Code

Quasi-Static and Dynamic Deformation Behavior of STS304- and Ta-fiber-reinforced Zr-based Amorphous Matrix Composites Fabricated by Liquid Pressing Process

액상가압공정으로 제조된 STS304와 Ta 섬유 강화 Zr계 비정질 복합재료의 준정적 및 동적 변형거동

  • Kim, Yongjin (Center for Advanced Aerospace Materials, Pohang University of Science and Technology) ;
  • Shin, Sang Yong (Center for Advanced Aerospace Materials, Pohang University of Science and Technology) ;
  • Kim, Jin Sung (Departement of Mechanical Engineering, Korea Advanced Institute of Science and Technology) ;
  • Huh, Hoon (Departement of Mechanical Engineering, Korea Advanced Institute of Science and Technology) ;
  • Kim, Ki Jong (Center for Advanced Aerospace Materials, Pohang University of Science and Technology) ;
  • Lee, Sunghak (Center for Advanced Aerospace Materials, Pohang University of Science and Technology)
  • 김용진 (포항공과대학교 항공재료연구센터) ;
  • 신상용 (포항공과대학교 항공재료연구센터) ;
  • 김진성 (한국과학기술원 기계공학과 전산역학설계연구실) ;
  • 허훈 (한국과학기술원 기계공학과 전산역학설계연구실) ;
  • 김기종 (포항공과대학교 항공재료연구센터) ;
  • 이성학 (포항공과대학교 항공재료연구센터)
  • Received : 2009.12.08
  • Published : 2010.06.22

Abstract

Zr-based amorphous alloy matrix composites reinforced with stainless steel (STS) and tantalum continuous fibers were fabricated without pores or defects by a liquid pressing process, and their quasi-static and dynamic deformation behaviors were investigated by using a universal testing machine and a Split Hopkinson pressure bar, respectively. The quasi-static compressive test results indicated that the fiberreinforced composites showed amaximum strength of about 1050~1300 MPa, and its strength maintained over 700 MPa until reaching astrain of 40%. Under dynamic loading, the maximum stresses of the composites were considerably higher than those under quasi-static loading because of the strain-rate hardening effect, whereas the fracture strains were considerably lower than those under quasi-static loading because of the decreased resistance to fracture. The STS-fiber-reinforced composite showed a greater compressive strength and ductility under dynamic loading than the tantalum-fiber-reinforced composite because of the excellent resistance to fracture of STS fibers.

Keywords

Acknowledgement

Grant : 전단파괴 제어를 통한 고성능 비정질 복합재료 개발

Supported by : 한국기계연구원

References

  1. J. G. Lee, S. S. Park, D.-G. Lee, S. Lee, and N. J. Kim, Intermetallics 12, 1125 (2004). https://doi.org/10.1016/j.intermet.2004.04.022
  2. L. Q. Xing, C. Bertrand, J. P. Dallas, and M. Cornet, Mater. Sci. Eng. A 241, 216 (1998). https://doi.org/10.1016/S0921-5093(97)00489-9
  3. K. Lee, S. B. Lee, S. K. Lee, and S. Lee, J. Kor. Inst. Met. & Mater. 46, 524 (2008).
  4. S.-B. Lee, K. Lee, S.-K. Lee, and S. Lee, J. Kor. Inst. Met. & Mater. 45, 435 (2007).
  5. R. B. Dandliker, R. D. Conner, and W. L. Johnson, J. Mater. Res. 13, 2896 (1998). https://doi.org/10.1557/JMR.1998.0396
  6. Y. H. Jang, S. S. Kim, Y. C. Jung, and S. K. Lee, J. Kor. Inst. Met. & Mater. 42, 425 (2004).
  7. Z. F. Zhang, J. Eckert, and L. Schultz, Acta Mater. 51, 1167 (2003). https://doi.org/10.1016/S1359-6454(02)00521-9
  8. C. C. Hays, C. P. Kim, and W. L. Johnson, Phys. Rev. Lett. 84, 2901 (2000). https://doi.org/10.1103/PhysRevLett.84.2901
  9. J. G. Lee, D.-G. Lee, S. Lee, and N. J. Kim, Metall. Mater. Trans. A 35, 3753 (2004). https://doi.org/10.1007/s11661-004-0281-7
  10. H. Choi-Yim, R. Busch, U. Koster, and W. L. Johnson, Acta Mater. 47, 2455 (1999). https://doi.org/10.1016/S1359-6454(99)00103-2
  11. C. Fan, C. Li, A. Inoue, and V. Haas, Phys. Rev. B 61, 3761 (2000). https://doi.org/10.1103/PhysRevB.61.R3761
  12. L. Q. Xing, Y. Li, K. T. Ramesh, J. Li, and T. C. Hufnagel, Phys. Rev. B 64, 180 (2001).
  13. A. Inoue, H. Kimura, and S. Yamaura, Met. Mater. Int. 9, 527 (2003). https://doi.org/10.1007/BF03027251
  14. B.-J. Lee, J. C. Lee, Y. C. Kim, and S. Lee, Met. Mater. Int. 10, 467 (2004). https://doi.org/10.1007/BF03027350
  15. K. Cho, S. Lee, S. Nutt, and J. Duffy, Acta Mater. 41, 923 (1993). https://doi.org/10.1016/0956-7151(93)90026-O
  16. D. K. Kim, S. Y. Kang, S. Lee, and K. J. Lee, Metall. Mater. Trans. A 30, 81 (1999). https://doi.org/10.1007/s11661-999-0197-3
  17. D-G. Lee, S. Lee, and C. S. Lee, Mater. Sci. Eng. A 366, 25 (2004). https://doi.org/10.1016/j.msea.2003.08.061
  18. H. S. Lee, B. Hwang, S. Lee, C. G. Lee, and S. J. Kim, Metall. Mater. Trans. A 35, 2371 (2004). https://doi.org/10.1007/s11661-006-0217-5
  19. A. Peker and W. L. Johnson, Appl. Phys. Lett. 63, 2342 (1993). https://doi.org/10.1063/1.110520
  20. W. H. Wang, C. Dong, and C. H. Shek, Mater. Sci. Eng. R 44, 45 (2004). https://doi.org/10.1016/j.mser.2004.03.001
  21. K. Lee, K. Euh, D. H. Nam, S. Lee, and N. J. Kim, Mater. Sci. Eng. A 449, 937 (2007). https://doi.org/10.1016/j.msea.2006.03.140
  22. E. D. H. Davies and S. C. Hunter, J. Mech. Phys. Solids 11, 155 (1963). https://doi.org/10.1016/0022-5096(63)90050-4
  23. S. Nemat-Nasser, Mechanical Testiong and Evaluation, ASM Handbook, vol. 8, p. 425-559, ASM International, Ohio (2000).
  24. R. S. Coates and K. T. Ramesh, Mater. Sci. Eng. A 145, 159 (1991). https://doi.org/10.1016/0921-5093(91)90245-I
  25. M. G. Da Silva and K. T. Ramesh, Int. J. Plasticity 13, 587 (1997). https://doi.org/10.1016/S0749-6419(97)00027-2
  26. D. R. Chichili, K. T. Ramesh, and K. J. Hemker, Acta Mater. 46, 1025 (1998). https://doi.org/10.1016/S1359-6454(97)00287-5
  27. M. A. Meyers, Dynamic Behavior of Materials, p. 296-322, John Wiley & Sons, Inc., New York (1994).
  28. J. L. Murry, Phase Diagram of Binary Titanium Alloys, p. 354, ASM international, Ohio (1987).
  29. D.-G. Lee, Y. G. Kim, S. Lee, and N. J. Kim, Metall. Mater. Trans. A 37, 2893 (2006). https://doi.org/10.1007/BF02586121
  30. R. D. Conner, R. B. Dandliker, and W. L. Johnson, Acta Mater. 46, 6089 (1998). https://doi.org/10.1016/S1359-6454(98)00275-4
  31. K. Q. Qiu, A. M. Wang, H. F. Zhang, B. Z. Ding, and Z. Q. Hu, Intermetallics 10, 1283 (2002). https://doi.org/10.1016/S0966-9795(02)00136-X
  32. A. S. Khan and R. Liang, Int. J. Plasticity 15, 1089 (1999). https://doi.org/10.1016/S0749-6419(99)00030-3
  33. I. W. Hall, A. Tasdemirci, and J. Derrick, Mater. Sci. Eng. A 507, 93 (2009). https://doi.org/10.1016/j.msea.2008.12.021
  34. K. Lee, S.-B. Lee, S.-K. Lee, and S. Lee, J. Kor. Inst. Met. & Mater. 45, 654 (2007).