Browse > Article
http://dx.doi.org/10.3365/KJMM.2010.48.06.477

Quasi-Static and Dynamic Deformation Behavior of STS304- and Ta-fiber-reinforced Zr-based Amorphous Matrix Composites Fabricated by Liquid Pressing Process  

Kim, Yongjin (Center for Advanced Aerospace Materials, Pohang University of Science and Technology)
Shin, Sang Yong (Center for Advanced Aerospace Materials, Pohang University of Science and Technology)
Kim, Jin Sung (Departement of Mechanical Engineering, Korea Advanced Institute of Science and Technology)
Huh, Hoon (Departement of Mechanical Engineering, Korea Advanced Institute of Science and Technology)
Kim, Ki Jong (Center for Advanced Aerospace Materials, Pohang University of Science and Technology)
Lee, Sunghak (Center for Advanced Aerospace Materials, Pohang University of Science and Technology)
Publication Information
Korean Journal of Metals and Materials / v.48, no.6, 2010 , pp. 477-488 More about this Journal
Abstract
Zr-based amorphous alloy matrix composites reinforced with stainless steel (STS) and tantalum continuous fibers were fabricated without pores or defects by a liquid pressing process, and their quasi-static and dynamic deformation behaviors were investigated by using a universal testing machine and a Split Hopkinson pressure bar, respectively. The quasi-static compressive test results indicated that the fiberreinforced composites showed amaximum strength of about 1050~1300 MPa, and its strength maintained over 700 MPa until reaching astrain of 40%. Under dynamic loading, the maximum stresses of the composites were considerably higher than those under quasi-static loading because of the strain-rate hardening effect, whereas the fracture strains were considerably lower than those under quasi-static loading because of the decreased resistance to fracture. The STS-fiber-reinforced composite showed a greater compressive strength and ductility under dynamic loading than the tantalum-fiber-reinforced composite because of the excellent resistance to fracture of STS fibers.
Keywords
composites; infiltration; strain rate; impact test; liquid pressing process;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 J. G. Lee, S. S. Park, D.-G. Lee, S. Lee, and N. J. Kim, Intermetallics 12, 1125 (2004).   DOI   ScienceOn
2 L. Q. Xing, C. Bertrand, J. P. Dallas, and M. Cornet, Mater. Sci. Eng. A 241, 216 (1998).   DOI   ScienceOn
3 K. Lee, S. B. Lee, S. K. Lee, and S. Lee, J. Kor. Inst. Met. & Mater. 46, 524 (2008).
4 S.-B. Lee, K. Lee, S.-K. Lee, and S. Lee, J. Kor. Inst. Met. & Mater. 45, 435 (2007).
5 R. B. Dandliker, R. D. Conner, and W. L. Johnson, J. Mater. Res. 13, 2896 (1998).   DOI   ScienceOn
6 Y. H. Jang, S. S. Kim, Y. C. Jung, and S. K. Lee, J. Kor. Inst. Met. & Mater. 42, 425 (2004).
7 Z. F. Zhang, J. Eckert, and L. Schultz, Acta Mater. 51, 1167 (2003).   DOI   ScienceOn
8 C. C. Hays, C. P. Kim, and W. L. Johnson, Phys. Rev. Lett. 84, 2901 (2000).   DOI   ScienceOn
9 J. G. Lee, D.-G. Lee, S. Lee, and N. J. Kim, Metall. Mater. Trans. A 35, 3753 (2004).   DOI   ScienceOn
10 H. Choi-Yim, R. Busch, U. Koster, and W. L. Johnson, Acta Mater. 47, 2455 (1999).   DOI   ScienceOn
11 C. Fan, C. Li, A. Inoue, and V. Haas, Phys. Rev. B 61, 3761 (2000).   DOI   ScienceOn
12 L. Q. Xing, Y. Li, K. T. Ramesh, J. Li, and T. C. Hufnagel, Phys. Rev. B 64, 180 (2001).
13 A. Inoue, H. Kimura, and S. Yamaura, Met. Mater. Int. 9, 527 (2003).   DOI   ScienceOn
14 B.-J. Lee, J. C. Lee, Y. C. Kim, and S. Lee, Met. Mater. Int. 10, 467 (2004).   DOI   ScienceOn
15 K. Cho, S. Lee, S. Nutt, and J. Duffy, Acta Mater. 41, 923 (1993).   DOI   ScienceOn
16 D. K. Kim, S. Y. Kang, S. Lee, and K. J. Lee, Metall. Mater. Trans. A 30, 81 (1999).   DOI   ScienceOn
17 D-G. Lee, S. Lee, and C. S. Lee, Mater. Sci. Eng. A 366, 25 (2004).   DOI   ScienceOn
18 H. S. Lee, B. Hwang, S. Lee, C. G. Lee, and S. J. Kim, Metall. Mater. Trans. A 35, 2371 (2004).   DOI   ScienceOn
19 A. Peker and W. L. Johnson, Appl. Phys. Lett. 63, 2342 (1993).   DOI   ScienceOn
20 W. H. Wang, C. Dong, and C. H. Shek, Mater. Sci. Eng. R 44, 45 (2004).   DOI   ScienceOn
21 K. Lee, K. Euh, D. H. Nam, S. Lee, and N. J. Kim, Mater. Sci. Eng. A 449, 937 (2007).   DOI   ScienceOn
22 E. D. H. Davies and S. C. Hunter, J. Mech. Phys. Solids 11, 155 (1963).   DOI   ScienceOn
23 S. Nemat-Nasser, Mechanical Testiong and Evaluation, ASM Handbook, vol. 8, p. 425-559, ASM International, Ohio (2000).
24 M. A. Meyers, Dynamic Behavior of Materials, p. 296-322, John Wiley & Sons, Inc., New York (1994).
25 R. S. Coates and K. T. Ramesh, Mater. Sci. Eng. A 145, 159 (1991).   DOI   ScienceOn
26 M. G. Da Silva and K. T. Ramesh, Int. J. Plasticity 13, 587 (1997).   DOI   ScienceOn
27 D. R. Chichili, K. T. Ramesh, and K. J. Hemker, Acta Mater. 46, 1025 (1998).   DOI   ScienceOn
28 J. L. Murry, Phase Diagram of Binary Titanium Alloys, p. 354, ASM international, Ohio (1987).
29 D.-G. Lee, Y. G. Kim, S. Lee, and N. J. Kim, Metall. Mater. Trans. A 37, 2893 (2006).   DOI   ScienceOn
30 R. D. Conner, R. B. Dandliker, and W. L. Johnson, Acta Mater. 46, 6089 (1998).   DOI   ScienceOn
31 K. Q. Qiu, A. M. Wang, H. F. Zhang, B. Z. Ding, and Z. Q. Hu, Intermetallics 10, 1283 (2002).   DOI   ScienceOn
32 A. S. Khan and R. Liang, Int. J. Plasticity 15, 1089 (1999).   DOI   ScienceOn
33 I. W. Hall, A. Tasdemirci, and J. Derrick, Mater. Sci. Eng. A 507, 93 (2009).   DOI   ScienceOn
34 K. Lee, S.-B. Lee, S.-K. Lee, and S. Lee, J. Kor. Inst. Met. & Mater. 45, 654 (2007).