Browse > Article
http://dx.doi.org/10.12989/scs.2022.44.3.353

Coupled effect of variable Winkler-Pasternak foundations on bending behavior of FG plates exposed to several types of loading  

Himeur, Nabil (Reactive Materials and Systems Laboratory (LMSR), Department of mechanical Engineering, University of Sidi Bel Abbes, Faculty of Technology)
Mamen, Belgacem (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology)
Benguediab, Soumia (Department of Civil Engineering and Hydraulic, University of Saida)
Bouhadra, Abdelhakim (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology)
Menasria, Abderrahmane (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology)
Bouchouicha, Benattou (Reactive Materials and Systems Laboratory (LMSR), Department of mechanical Engineering, University of Sidi Bel Abbes, Faculty of Technology)
Bourada, Fouad (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology)
Benguediab, Mohamed (Reactive Materials and Systems Laboratory (LMSR), Department of mechanical Engineering, University of Sidi Bel Abbes, Faculty of Technology)
Tounsi, Abdelouahed (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology)
Publication Information
Steel and Composite Structures / v.44, no.3, 2022 , pp. 353-369 More about this Journal
Abstract
This study attempts to shed light on the coupled impact of types of loading, thickness stretching, and types of variation of Winkler-Pasternak foundations on the flexural behavior of simply- supported FG plates according to the new quasi-3D high order shear deformation theory, including integral terms. A new function sheep is used in the present work. In particular, both Winkler and Pasternak layers are non-uniform and vary along the plate length direction. In addition, the interaction between the loading type and the variation of Winkler-Pasternak foundation parameters is considered and involved in the governing equilibrium equations. Using the virtual displacement principle and Navier's solution technique, the numerical results of non-dimensional stresses and displacements are computed. Finally, the non-dimensional formulas' results are validated with the existing literature, and excellent agreement is detected between the results. More importantly, several complementary parametric studies with the effect of various geometric and material factors are examined. The present analytical model is suitable for investigating the bending of simply-supported FGM plates for special technical engineering applications.
Keywords
FGM plates; Navier's technique; non-uniform Winkler-Pasternak foundations; original quasi-3D theory; several types of load;
Citations & Related Records
Times Cited By KSCI : 42  (Citation Analysis)
연도 인용수 순위
1 Sobhy, M. (2015), "Thermoelastic Response of FGM Plates with temperature-dependent properties resting on variable elastic foundations", J. Appl. Mech., 7(6), 1550082. https://doi.org/10.1142/s1758825115500829.   DOI
2 Tayeb, T.S., Zidour, M., Bensattalah, T., Heireche, H., Benahmed, A. and Bedia, E.A. (2020), "Mechanical buckling of FG-CNTs reinforced composite plate with parabolic distribution using Hamilton's energy principle", 8(2), 135-1481. https://doi.org/10.12989/anr.2020.8.2.135.   DOI
3 Thai, H.T. and Choi, D.H. (2013), "A simple first order shears deformation theory for the bending and free vibration analysis of functionally graded plates", Compos. Struct., 101, 332-340. https://doi.org/10.1016/j.compstruct.2013.02.019.   DOI
4 Thai, H.T. and Choi, D.H. (2013), "Finite element formulation of various four unknown shear deformation theories for functionally graded plates", Finite Elements Analysis Design, 75, 50-61. https://doi.org/10.1016/j.finel.2013.07.003.   DOI
5 Timesli, A. (2020), "Prediction of the critical buckling load of SWCNT reinforced concrete cylindrical shell embedded in an elastic foundation", Comput. Concrete., 26(1), 53-62. https://doi.org/10.12989/CAC.2020.26.1.053.   DOI
6 Tornabene, F., Fantuzzi, N., Viola, E. and Reddy, J.N. (2014), "Winkler-Pasternak foundation effect on the static and dynamic analyses of laminated doubly-curved and degenerate shells and panels", Compos. Part B Eng., 57, 269-296. https://doi.org/10.1016/j.compositesb.2013.06.020.   DOI
7 Uzun Yaylaci, E., Yaylaci, M., Olmez, H. and Birinci, A. (2020), "Artificial neural network calculations for a receding contact problem", Comput. Concrete, 25(6), 551-563. https://doi.org/10.12989/cac.2020.25.6.551.   DOI
8 Vinyas, M. (2020), "On frequency response of porous functionally graded magneto-electro-elastic circular and annular plates with different electro-magnetic conditions using HSDT", Compos. Struct., 240, 112044. https://doi.org/10.1016/j.compstruct.2020.112044.   DOI
9 Jena, S.K., Chakraverty, S., Malikan, M. and Sedighi, H. (2020), "Implementation of Hermite-Ritz method and Navier's technique for vibration of functionally graded porous nanobeam embedded in Winkler-Pasternak elastic foundation using biHelmholtz nonlocal elasticity", J. Mech. Mater. Struct., 15(3), 405-434. https://doi.org/10.2140/jomms.2020.15.405.   DOI
10 Hamed, M.A., Mohamed, S.A. and Eltaher, M.A. (2020), "Buckling analysis of sandwich beam rested on elastic foundation and subjected to varying axial in-plane loads", Steel Compos. Struct., 34(1), 75-89. https://doi.org/10.12989/scs.2020.34.1.075.   DOI
11 Attia, M.A. (2017), "On the mechanics of functionally graded nanobeams with the account of surface elasticity", J. Eng. Sci., 115,73-101. https://doi.org/10.1016/j.ijengsci.2017.03.011.   DOI
12 Behravan Rad, A. (2015), "Thermo-elastic analysis of functionally graded circular plates resting on a gradient hybrid foundation", Appl. Math. Comput., 256, 276-298. https://doi.org/10.1016/j.amc.2015.01.026.   DOI
13 Beldjelili, Y., Merazi, M., Boutaleb, S. and Hellal, H. (2021), "Analytical solution for static bending analysis of functionally graded plates with porosities", Frattura ed Integrita Strutturale, 15(55), 65-75. https://doi.org/10.3221/IGF-ESIS.55.05.   DOI
14 Ghandourah, E.E. and Abdraboh, A.M. (2020), "Dynamic analysis of functionally graded nonlocal nanobeam with different porosity models", Steel Compost. Struct., 36(3), 293-305. https://doi.org/10.12989/SCS.2020.36.3.293.   DOI
15 Ghandourh, E.E. and Abdraboh, A.M. (2020), "Dynamic analysis of functionally graded nonlocal nanobeam with different porosity models", 36(3), 293-305. http://dx.doi.org/10.12989/scs.2020.36.3.293.   DOI
16 Ghannadpour, S.A.M. and Mehrparvar, M. (2020), "Nonlinear and post-buckling responses of FGM plates with oblique elliptical cutouts using plate assembly technique", 34(2), 227-239. http://dx.doi.org/10.12989/scs.2020.34.2.227.   DOI
17 Mehar, K., Panda, S.K. and Mahapatra, T.R. (2017), "Thermoelastic nonlinear frequency analysis of CNT reinforced functionally graded sandwich structure", European J. Mech. A/Solids, 65, 384-396. https://doi.org/10.1016/j.euromechsol.2017.05.005.   DOI
18 Avcar, M. (2016), "Effects of material non-homogeneity and two parameters elastic foundation on fundamental frequency parameters of Timoshenko beams", Acta Phys. Pol. A, 130(1), 375-378. https://doi.org/10.12693/APhysPolA.130.375.   DOI
19 Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compost. Struct., 30(6), 603-615. https://doi.org/10.12989/SCS.2019.30.6.603.   DOI
20 Avcar, M. and Mohammed, W.K.M. (2018), "Free vibration of functionally graded beams resting on Winkler-Pasternak foundation", Arab. J. Geosci. 11(10), 232. https://doi.org/10.1007/s12517-018-3579-2.   DOI
21 Merzoug, M., Bourada, M., Sekkal, M., Ali Chaibdra, A., Belmokhtar, C., Benyoucef, S. and Benachour, A. (2020), "2D and quasi 3D computational models for thermoelastic bending of FG beams on variable elastic foundation: Effect of the micromechanical models", Geomech. Eng., 22(4), 361-374. https://doi.org/10.12989/gae.2020.22.4.361.   DOI
22 Rachedi, M.A., Benyoucef, S., Bouhadra, A., Bouiadjra, R.B., Sekkal, M. and Benachour, A. (2020), "Impact of the homogenization models on the thermoelastic response of FG plates on variable elastic foundation", Geomech. Eng., 22(1), 65-80. https://doi.org/10.12989/gae.2020.22.1.065.   DOI
23 Rad, A.B. and Shariyat, M. (2013), "A three-dimensional elasticity solution for two-directional FGM annular plates with nonuniform elastic foundations subjected to normal and shear tractions", Acta. Mech. Solida. Sin., 26(6), 671-690. https://doi.org/10.1016/s0894-9166(14)60010-0.   DOI
24 Akbas, S.D. (2015), "Wave propagation of a functionally graded beam in thermal environments", Steel Compost. Struct., 19(6), 1421-1447. https://doi.org/10.12989/SCS.2015.19.6.1421.   DOI
25 Abdulrazzaq, M.A., Fenjan, R.M., Ahmed, R.A. and Faleh, N.M. (2019), "Thermal buckling of nonlocal clamped exponentially graded plate according to a secant function based refined theory", 35(1), 147-157. http://dx.doi.org/10.12989/scs.2020.35.1.147.   DOI
26 Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175.   DOI
27 Selmi, A. (2020), "Exact solution for nonlinear vibration of clamped-clamped functionally graded buckled beam", Smart Struct. Syst., 26(3), 361-371. https://doi.org/10.12989/SSS.2020.26.3.361.   DOI
28 Si, H., Shen, D., Xia, J. and Tahouneh, V. (2020), "Vibration behavior of functionally graded sandwich beam with porous core and nanocomposite layers", 36(1), 1-16. http://dx.doi.org/10.12989/scs.2020.36.1.001.   DOI
29 Ahmed, R.A., Khalaf, B.S., Raheef, K.M., Fenjan, R.M. and Faleh, N.M. (2021), "Investigating dynamic response of nonlocal functionally graded porous piezoelectric plates in thermal environment", 40(2), 243-254. https://doi.org/10.12989/scs.2021.40.2.243.   DOI
30 Akavci, S.S. (2016), "Mechanical behavior of functionally graded sandwich plates on elastic foundation", Compos. Part B Eng., 96, 136-152. https://doi.org/10.1016/j.compositesb.2016.04.035.   DOI
31 Akbas, S.D. (2019), "Hygro-Thermal Nonlinear Analysis of a Functionally Graded Beam", J. Appl. Comput. Mech., 5(2), 477-485. https://doi.org/10.22055/jacm.2018.26819.1360.   DOI
32 Al-Basyouni, K.S., Ghandourah, E., Mostafa, H.M. and Algarni, A. (2020), "Effect of the rotation on the thermal stress wave propagation in non-homogeneous viscoelastic body", Geomech. Eng., 21(1), 1-9. https://doi.org/10.12989/GAE.2020.21.1.001.   DOI
33 Asrari, R., Ebrahimi, F. and Kheirikhah, M.M. (2020), "On postbuckling characteristics of functionally graded smart magnetoelectro-elastic nanoscale shells", 9(1), 33-45. http://dx.doi.org/10.12989/anr.2020.9.1.033.   DOI
34 Cao, Y., Qian, X., Fan, Q. and Ebrahimi, F. (2020), "Mechanical analysis of functionally graded spherical panel resting on elastic foundation under external pressure", 74(2), 297-311. http://dx.doi.org/10.12989/sem.2020.74.2.297.   DOI
35 Madenci, E. (2019), "A refined functional and mixed formulation to static analyses of FGM beams", Struct. Eng. Mech., 69(4), 427-437. https://doi.org/10.12989/sem.2019.69.4.427.   DOI
36 Daouadji, T.A., Belkacem, A. and Benferhat, R. (2016), "Bending analysis of an imperfect FGM plates under hygro-thermomechanical loading with analytical validation", Adv. Mater. Res., 5(1), 5-53. http://dx.doi.org/10.12989/amr.2016.5.1.035.   DOI
37 Ghumare, S.M. and Sayyad, A.S. (2019), "Nonlinear hygrothermo-mechanical analysis of functionally graded plates using a fifth-order plate theory", Arabian J. Sci. Eng., 44(10), 8727-8745. https://doi.org/10.1007/s13369-019-03894-8.   DOI
38 Yaghoobi, H. and Fereidoon, A. (2014), "Mechanical and thermal buckling analysis of functionally graded plates resting on elastic foundations: an assessment of a simple refined nth-order shear deformation theory", Compos. Part B, 62, 54-64. https://doi.org/10.1016/j.compositesb.2014.02.014.   DOI
39 Bharath, H.S., Waddar, S., Bekinal, S.I., Jeyaraj, P. and Doddamani, M. (2020), "Effect of axial compression on dynamic response of concurrently printed sandwich", Compos. Struct., 113223. https://doi.org/10.1016/j.compstruct.2020.113223.   DOI
40 Boulal, A., Bensattalah, T., Karas, A., Zidour, M., Heireche, H. and Bedia, E.A. (2020), "Buckling of carbon nanotube reinforced composite plates supported by Kerr foundation using Hamilton's energy principle", 73(2), 209-223. https://doi.org/10.12989/sem.2020.73.2.209.   DOI
41 Civalek, O. and Avcar, M. (2020), "Free vibration and buckling analyses of CNT reinforced laminated non-rectangular plates by discrete singular convolution method", Eng. Comput., 1-33. https://doi.org/10.1007/s00366-020-01168-8.   DOI
42 Daikh, A.A. and Zenkour, A.M. (2020), "Bending of functionally graded sandwich nanoplates resting on pasternak foundation under different boundary conditions", J. Appl. Comput. Mech., 6, 1245-1259. https://doi.org/10.22055/jacm.2020.33136.2166.   DOI
43 Yaylaci, M., Adiyaman, E., Oner, E. and Birinci, A. (2020), "Examination of analytical and finite element solutions regarding contact of a functionally graded layer", Struct. Eng. Mech., 76(3), 325-336. https://doi.org/10.12989/sem.2020.76.3.325.   DOI
44 Yaylaci, M. (2016), "The investigation crack problem through numerical analysis", Struct. Eng. Mech., 57(6), 1143-1156., https://doi.org/10.12989/sem.2016.57.6.1143.   DOI
45 Yaylaci, M. and Avcar, M. (2020), "Finite element modelling of contact between an elastic layer and two elastic quarter planes", Comput. Concrete, 26(2), 107-114, https://doi.org/10.12989/cac.2020.26.2.107.   DOI
46 Yaylaci, M. and Birinci, A. (2013), "The receding contact problem of two elastic layers supported by two elastic quarter planes", Struct. Eng. Mech., 48(2), 241-255. http://doi.org/10.12989/sem.2013.48.2.241.   DOI
47 Yaylaci, M., Adiyaman, E., Oner, E. and Birinci, A. (2021), "Investigation of continuous and discontinuous contact cases in the contact mechanics of graded materials using analytical method and FEM", Comput. Concrete. 27(3), 199-https://doi.org/10.12989/cac.2021.27.3.199.   DOI
48 Yaylaci, M., Eyuboglu, A., Adiyaman, G., Uzun Yaylaci, E., Oner, E. and Birinci, A. (2021), "Assessment of different solution methods for receding contact problems in functionally graded layered mediums", Mech. Mater., 154, 103730. https://doi.org/10.1016/j.mechmat.2020.103730.   DOI
49 Yaylaci, M., Yayli, M., Uzun Yaylaci, E., Olmez, H. and Birinci, A. (2021), "Analyzing the contact problem of a functionally graded layer resting on an elastic half plane with theory of elasticity, finite element method and multilayer perceptron", Struct. Eng. Mech., 78(5), 585-597. https://doi.org/10.12989/sem.2021.78.5.585.   DOI
50 Daouadji, T.H. and Hadji, L. (2015), "Analytical solution of nonlinear cylindrical bending for functionally graded plates", Geomech. Eng., 9(5), 631-644. https://doi.org/10.12989/GAE.2015.9.5.631.   DOI
51 Dehshahri, K., Nejad, M. Z., Ziaee, S., Niknejad, A. and Hadi, A. (2020), "Free vibrations analysis of arbitrary threedimensionally FGM nanoplates", 8(1), 115-134. http://dx.doi.org/10.12989/anr.2020.8.2.115.   DOI
52 Kar, V.R. and Panda, S.K. (2016), "Nonlinear thermomechanical deformation behaviour of P-FGM shallow spherical shell panel", Chinese J. Aeronautics, 29(1), 173-183. https://doi.org/10.1016/j.cja.2015.12.007.   DOI
53 Kar, V.R., Mahapatra, T.R. and Panda, S.K. (2015), "Nonlinear flexural analysis of laminated composite flat panel under hygrothermo-mechanical loading", Steel Compos. Struct., 19 (4), 1011-1033. https://doi.org/10.12989/scs.2015.19.4.1011.   DOI
54 Karami, B., Shahsavari, D., Janghorban, M. and Li, L. (2020), "Free vibration analysis of FG nanoplate with poriferous imperfection in hygrothermal environment", 73(2), 191-207. http://dx.doi.org/10.12989/sem.2020.73.2.191.   DOI
55 Khalaf, B.S., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing nonlinear mechanical-thermal buckling of imperfect micro-scale beam made of graded graphene reinforced composites", 8(3), 219-235. https://doi.org/10.12989/amr.2019.8.3.219.   DOI
56 Kiani, Y. (2019), "NURBS-based thermal buckling analysis of graphene platelet reinforced composite laminated skew plates", J. Thermal Stresses, 43(1), 1-19. https://doi.org/10.1080/01495739.2019.1673687.   DOI
57 Zhang, H., Jiang, J.Q. and Zhang, Z.C. (2014), "Threedimensional elasticity solutions for bending of generally supported thick functionally graded plates", Appl. Math. Mech., 35(11), 1467-1478. https://doi.org/10.1007/s10483-014-1871-7.   DOI
58 Yu, Q., Xu, H. and Liao, S. (2018), "Nonlinear analysis for extreme large bending deflection of a rectangular plate on nonuniform elastic foundations", Appl. Math. Modelling, 61, 316- 340. https://doi.org/10.1016/j.apm.2018.04.022.   DOI
59 Yuan, Y., Zhao, K., Zhao, Y. and Kiani, K. (2020), "Nonlocalintegro-vibro analysis of vertically aligned monolayered nonuniform FGM nanorods", 37(5), 551-569. http://dx.doi.org/10.12989/scs.2020.37.5.551.   DOI
60 Zenkour, A.M., Allam, M.N.M., and Radwan, A.F. (2014), "Effects of transverse shear and normal strains on FG plates resting on elastic foundations under hygro-thermo-mechanical loading", Int. J. Appl. Mech., 6(5), 1450063. https://doi.org/10.1142/S175882511450063X.   DOI
61 Oner, E., Yaylaci, M. and Birinci, A. (2015), "Analytical solution of a contact problem and comparison with the results from FEM", Struct. Eng. Mech., 54(4), 607-622. https://doi.org/10.12989/sem.2015.54.4.607.   DOI
62 Moraveji Tabasi, H., Eskandari Jam, J., Malekzadeh Fard, K. and Heydari Beni, M. (2020), "Buckling and free vibration analysis of fiber metal-laminated plates resting on partial elastic foundation", J. Appl. Comput. Mech., 6(1), 37-51. https://doi.org/10.22055/jacm.2019.28156.1489.   DOI
63 Nebab, M., Ait Atmane, H., Bennai, R. and Tounsi, A. (2019), "Effect of variable elastic foundations on static behavior of functionally graded plates using sinusoidal shear deformation", Arab. J. Geosci., 12(24), 809. https://doi.org/10.1007/s12517-019-4871-5.   DOI
64 Neves, A.M.A., Ferreira, A.J.M., Carrera. E., Roque, C.M.C., Cinefra, M., Jorge, R.M.N., and Soares, C.M.M. (2012), "A quasi-3D sinusoidal shear deformation theory for the static and free vibration analysis of functionally graded plates", Compos Part B, 43(2), 711-725. https://doi.org/10.1016/j.compositesb.2011.08.009.   DOI
65 Park, M. and Choi, D.H. (2018), "A simplified first-order shear deformation theory for bending, buckling and free vibration analyses of isotropic plates on elastic foundations", KSCE J. Civ. Eng., 22(4), 1235-1249. https://doi.org/10.1007/s12205-017-1517-6.   DOI
66 Pradhan, S.C. and Murmu, T. (2009), "Thermo-mechanical vibration of FGM sandwich beam under variable elastic foundations using differential quadrature method", J. Sound. Vib., 321(1-2), 342-362. https://doi.org/10.1016/j.jsv.2008.09.018.   DOI
67 Mehar, K. and Panda, S.K. (2019), "Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure", Adv. Nano Res., 7(3), 181-190. https://doi.org/10.12989/ANR.2019.7.3.181.   DOI
68 Li, D., Deng, Z., Xiao, H. and Jin, P. (2018), "Bending analysis of sandwich plates with different face sheet materials and functionally graded soft core", Thin-Walled Struct., 122, 8-16. https://doi.org/10.1016/j.tws.2017.09.033.   DOI
69 Liu, W.Q., Liu, S.J., Fan, M.Y., Tian, W., Wang, J.P. and Tahouneh, V. (2020), "Influence of internal pores and graphene platelets on vibration of non-uniform functionally graded columns", 35(2), 295-303. http://dx.doi.org/10.12989/scs.2020.35.2.295.   DOI
70 Mahapatra, T.R., Kar, V.R. and Panda, S.K. (2016), "Large amplitude vibration analysis of laminated composite spherical panels under hygrothermal environment", J. Struct. Stability Dynam., 16(3), 1450105. https://doi.org/10.1142/s0219455414501053.   DOI
71 Farshad Heidari, Ahmad Afsari and Maziar Janghorban (2020), "Several models for bending and buckling behaviors of FGCNTRCs with piezoelectric layers including size effects", 9(3), 193-210. http://dx.doi.org/10.12989/anr.2020.9.3.193.   DOI
72 Fenjan, R.M., Ahmed, R.A., Faleh, N.M. and Hani, F.M. (2020), "Static stability analysis of smart nonlocal thermo-piezomagnetic plates via a quasi-3D formulation", 26(1), 77-87. http://dx.doi.org/10.12989/sss.2020.26.1.077.   DOI
73 Fenjan, R.M., Moustafa, N.M. and Faleh, N.M. (2020), "Scaledependent thermal vibration analysis of FG beams having porosities based on DQM", 8(4), 283-292. http://dx.doi.org/10.12989/anr.2020.8.4.283.   DOI
74 Froio, D. and Rizzi, E. (2015), "Analytical solution for the elastic bending of beams lying on a variable Winkler support", Acta Mechanica, 227(4), 1157-1179. https://doi.org/10.1007/s00707-015-1508-y.   DOI
75 Jung, W.Y. and Han, S.C. (2015), "Static and eigenvalue problems of sigmoid functionally graded materials (S-FGM) micro-scale plates using the modified couple stress theory", Appl. Math. Model., 39(12), 3506-3524. https://doi.org/10.1016/j.apm.2014.11.056.   DOI
76 Gafour, Y., Hamidi, A., Benahmed, A., Zidour, M. and Bensattalah, T. (2020), "Porosity-dependent free vibration analysis of FG nanobeam using non-local shear deformation and energy principle", Adv. Nano. Res., 8(1), 37-47. https://doi.org/10.12989/anr.2020.8.1.037   DOI
77 Hadji, L. (2020), "Influence of the distribution shape of porosity on the bending of FGM beam using a new higher order shear deformation model", Smart Struct. Syst., 26(2), 253-262. https://doi.org/10.12989/sss.2020.26.2.253.   DOI