• 제목/요약/키워드: immunofluorescence

검색결과 623건 처리시간 0.03초

Isolation and characterization of cultured chicken oviduct epithelial cells and in vitro validation of constructed ovalbumin promoter in these cells

  • Yang, Hyeon;Lee, Bo Ram;Lee, Hwi-Cheul;Jung, Sun Keun;Kim, Ji-Youn;No, Jingu;Shanmugam, Sureshkumar;Jo, Yong Jin;Lee, Haesun;Hwang, Seongsoo;Byun, Sung June
    • Animal Bioscience
    • /
    • 제34권8호
    • /
    • pp.1321-1330
    • /
    • 2021
  • Objective: Transgenic hens hold a great promise to produce various valuable proteins. Through virus transduction into stage X embryo, the transgene expression under the control of constructed chicken ovalbumin promoters has been successfully achieved. However, a validation system that can evaluate differently developed ovalbumin promoters in in vitro, remains to be developed. Methods: In the present study, chicken oviduct epithelial cells (cOECs) were isolated from oviduct tissue and shortly cultured with keratinocyte complete medium supplemented with chicken serum. The isolated cells were characterized with immunofluorescence, western blot, and flow cytometry using oviduct-specific marker. Chicken mutated ovalbumin promoter (Mut-4.4-kb-pOV) was validated in these cells using luciferase reporter analysis. Results: The isolated cOECs revealed that the oviduct-specific marker, ovalbumin protein, was clearly detected by immunofluorescence, western blot, and flow cytometry analysis revealed that approximately 79.40% of the cells contained this protein. Also, luciferase reporter analysis showed that the constructed Mut-4.4-kb-pOV exhibited 7.1-fold (p<0.001) higher activity in the cOECs. Conclusion: Collectively, these results demonstrate the efficient isolation and characterization of cOECs and validate the activity of the constructed ovalbumin promoter in the cultured cOECs. The in vitro validation of the recombinant promoter activity in cOECs can facilitate the production of efficient transgenic chickens for potential use as bioreactors.

Vacuolar H(+)-ATPase is not restricted to clear cells of the epididymal epithelium in cattle

  • Kim, Sung Woo;Kim, Bongki
    • Journal of Animal Science and Technology
    • /
    • 제63권2호
    • /
    • pp.262-271
    • /
    • 2021
  • Communication among epididymal epithelial cells creates the best luminal condition where spermatozoa mature, transport and are stored. Vacuolar ATPase (V-ATPase) and cytokeratin 5 (KRT5) have been used as signal indicators for clear and basal cells of the epididymal epithelium, respectively, in mice, rats, bats, and pigs; however, these two markers have not yet been described in the epididymis of bulls. Here, we examined the presence and distribution of the B1 subunit of V-ATPase (B1-VATPase) and KRT5 in the distinct regions of adult bovine epididymides, specifically, the caput, corpus, and cauda. Immunofluorescence staining and confocal microscopy showed that narrow shaped-clear cells were placed in the caput and corpus regions of the bovine epididymis; however, they were absent in the cauda epididymis. In addition, B1-VATPase was highly expressed in the cauda spermatozoa; however, it was rarely detected in the caput spermatozoa. On the other hand, KRT5-positive cells, basal cells, were maintained beneath the basal lamina and they had the traditional form with a dome-shaped morphology from the caput to cauda region of the bovine epididymis. The co-expression of B1-VATPase and KRT5 was confined to basal cells placed in the basal region of the epithelium. In summary, 1) clear cells were present with region-specific localization, 2) B1-VATPase was present in the corpus and cauda spermatozoa but absent in the caput, 3) co-expressed cells with B1-VATPase and KRT5 were present in the adult bovine epididymis, and 4) B1-VATPase was not a specific marker for clear cells in the bovine epididymis. Therefore, the perfect epididymal luminal condition created by the specific expression and localization patterns of B1-VATPase might be necessary to obtain fertilizing capacity of spermatozoa in the bovine epididymis.

Toll-like receptor 4/nuclear factor-kappa B pathway is involved in radicular pain by encouraging spinal microglia activation and inflammatory response in a rat model of lumbar disc herniation

  • Zhu, Lirong;Huang, Yangliang;Hu, Yuming;Tang, Qian;Zhong, Yi
    • The Korean Journal of Pain
    • /
    • 제34권1호
    • /
    • pp.47-57
    • /
    • 2021
  • Background: Lumbar disc herniation (LDH) is a common cause of radicular pain, but the mechanism is not clear. In this study, we investigated the engagement of toll-like receptor 4 (TLR4) and the nuclear factor-kappa B (NF-κB) in radicular pain and its possible mechanisms. Methods: An LDH model was induced by autologous nucleus pulposus (NP) implantation, which was obtained from coccygeal vertebra, then relocated in the lumbar 4/5 spinal nerve roots of rats. Mechanical and thermal pain behaviors were assessed by using von Frey filaments and hotplate test respectively. The protein level of TLR4 and phosphorylated-p65 (p-p65) was evaluated by western blotting analysis and immunofluorescence staining. Spinal microglia activation was evaluated by immunofluorescence staining of specific relevant markers. The expression of proand anti-inflammatory cytokines in the spinal dorsal horn was measured by enzyme linked immunosorbent assay. Results: Spinal expression of TLR4 and p-NF-κB (p-p65) was significantly increased after NP implantation, lasting up to 14 days. TLR4 was mainly expressed in spinal microglia, but not astrocytes or neurons. TLR4 antagonist TAK242 decreased spinal expression of p-p65. TAK242 or NF-κB inhibitor pyrrolidinedithiocarbamic acid alleviated mechanical and thermal pain behaviors, inhibited spinal microglia activation, moderated spinal inflammatory response manifested by decreasing interleukin (IL)-1β, IL-6, tumor necrosis factor-α expression and increasing IL-10 expression in the spinal dorsal horn. Conclusions: The study revealed that TLR4/NF-κB pathway participated in radicular pain by encouraging spinal microglia activation and inflammatory response.

블루베리 열수 추출물의 근아세포의 근분화에 미치는 영향 (Investigation of the effect of Blueberry hydrothermal extracts on myoblast differentiation)

  • 최영수;김은미;최선경;이웅희;한효상;김기광
    • 대한본초학회지
    • /
    • 제35권3호
    • /
    • pp.25-32
    • /
    • 2020
  • Objectives : At present, aging-related degenerative muscle diseases are considered a serious problem. However, the effects on muscles regarding the efficacy of blueberry have not been studied. In this study, we tried to find out the correlation between blueberry and muscle. Methods : 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS) assay was performed to confirm the antioxidant efficacy of blueberry hydrothermal extract. To determine the effect of blueberry hydrothermal extracts (BHE) on myoblast activity, 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay was performed. To confirm the effect of blueberry hydrothermal extracts on the differentiation of myoblast into myotubes, protein expression levels of myosin heavy chain 3 (Myh3) and paired box 3/7 (pax3/7) were confirmed by immunoblot analysis. In addition, immunofluorescence microscopy was performed to confirm the effect on myotube formation of blueberry hydrothermal extracts. Results : Antioxidative efficacy and low toxicity were confirmed through ABTS assay and MTS assay of blueberry extract for myoblasts. As a result of immunoblot analysis and immunofluorescence analysis, the decrease in myogenic marker Pax3/7 was not confirmed, but myotubes The specific expression inhibitory activity of the forming protein Myh3 was confirmed. Through this, it was confirmed that the blueberry extract has a negative activity against myoblast differentiation. Conclusion : This experiment confirmed that blueberry hydrothermal extract has excellent antioxidant efficacy and negative results in inhibiting the differentiation and proliferation of myoblast. This requires deep study of certain ingredients and requires reassessment of the dietary intake of blueberries.

Wall shear stress on vascular smooth muscle cells exerts angiogenic effects on extracranial arteriovenous malformations

  • Ryu, Jeong Yeop;Park, Tae Hyun;Lee, Joon Seok;Oh, Eun Jung;Kim, Hyun Mi;Lee, Seok-Jong;Lee, Jongmin;Lee, Sang Yub;Huh, Seung;Kim, Ji Yoon;Im, Saewon;Chung, Ho Yun
    • Archives of Plastic Surgery
    • /
    • 제49권1호
    • /
    • pp.115-120
    • /
    • 2022
  • Background In addition to vascular endothelial cells, vascular smooth muscle cells (VSMCs) are subject to continuous shear stress because of blood circulation. The angiogenic properties of VSMCs in extracranial arteriovenous malformations (AVMs) may exceed those of normal blood vessels if the body responds more sensitively to mechanical stimuli. This study was performed to investigate the hypothesis that rapid angiogenesis may be achieved by mechanical shear stress. Methods VSMCs were obtained from six patients who had AVMs and six normal controls. The target genes were set to angiopoietin-2 (AGP2), aquaporin-1 (AQP1), and transforming growth factor-beta receptor 1 (TGFBR1). Reverse-transcriptase polymerase chain reaction (RT-PCR) and real-time PCR were implemented to identify the expression levels for target genes. Immunofluorescence was also conducted. Results Under the shear stress condition, mean relative quantity values of AGP2, AQP1, and TGFBR1 in AVM tissues were 1.927±0.528, 1.291±0.031, and 2.284±1.461 when compared with neutral conditions. The expression levels of all three genes in AVMs were higher than those in normal tissue except for AQP1 under shear stress conditions. Immunofluorescence also revealed increased staining of shear stress-induced genes in the normal tissue and in AVM tissue. Conclusions Shear stress made the VSMCs of AVMs more sensitive. Although the pathogenesis of AVMs remains unclear, our study showed that biomechanical stimulation imposed by shear stress may aggravate angiogenesis in AVMs.

SKF96365 impedes spinal glutamatergic transmission-mediated neuropathic allodynia

  • Qiru Wang;Yang Zhang;Qiong Du;Xinjie Zhao;Wei Wang;Qing Zhai;Ming Xiang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제27권1호
    • /
    • pp.39-48
    • /
    • 2023
  • Spinal nerve injury causes mechanical allodynia and structural imbalance of neurotransmission, which were typically associated with calcium overload. Storeoperated calcium entry (SOCE) is considered crucial elements-mediating intracellular calcium homeostasis, ion channel activity, and synaptic plasticity. However, the underlying mechanism of SOCE in mediating neuronal transmitter release and synaptic transmission remains ambiguous in neuropathic pain. Neuropathic rats were operated by spinal nerve ligations. Neurotransmissions were assessed by whole-cell recording in substantia gelatinosa. Immunofluorescence staining of STIM1 with neuronal and glial biomarkers in the spinal dorsal horn. The endoplasmic reticulum stress level was estimated from qRT-PCR. Intrathecal injection of SOCE antagonist SKF96365 dose-dependently alleviated mechanical allodynia in ipsilateral hind paws of neuropathic rats with ED50 of 18 ㎍. Immunofluorescence staining demonstrated that STIM1 was specifically and significantly expressed in neurons but not astrocytes and microglia in the spinal dorsal horn. Bath application of SKF96365 inhibited enhanced miniature excitatory postsynaptic currents in a dosage-dependent manner without affecting miniature inhibitory postsynaptic currents. Mal-adaption of SOCE was commonly related to endoplasmic reticulum (ER) stress in the central nervous system. SKF96365 markedly suppressed ER stress levels by alleviating mRNA expression of C/ EBP homologous protein and heat shock protein 70 in neuropathic rats. Our findings suggested that nerve injury might promote SOCE-mediated calcium levels, resulting in long-term imbalance of spinal synaptic transmission and behavioral sensitization, SKF96365 produces antinociception by alleviating glutamatergic transmission and ER stress. This work demonstrated the involvement of SOCE in neuropathic pain, implying that SOCE might be a potential target for pain management.

Profiling Bartonella infection and its associated risk factors in shelter cats in Malaysia

  • Nurul Najwa Ainaa Alias;Sharina Omar;Nur Indah Ahmad;Malaika Watanabe;Sun Tee Tay;Nor Azlina Aziz;Farina Mustaffa-Kamal
    • Journal of Veterinary Science
    • /
    • 제24권3호
    • /
    • pp.38.1-38.12
    • /
    • 2023
  • Background: Poor disease management and irregular vector control could predispose sheltered animals to disease such as feline Bartonella infection, a vector-borne zoonotic disease primarily caused by Bartonella henselae. Objectives: This study investigated the status of Bartonella infection in cats from eight (n = 8) shelters by molecular and serological approaches, profiling the CD4:CD8 ratio and the risk factors associated with Bartonella infection in shelter cats. Methods: Bartonella deoxyribonucleic acid (DNA) was detected through polymerase chain reaction (PCR) targeting 16S-23S rRNA internal transcribed spacer gene, followed by DNA sequencing. Bartonella IgM and IgG antibody titre, CD4 and CD8 profiles were detected using indirect immunofluorescence assay and flow cytometric analysis, respectively. Results: B. henselae was detected through PCR and sequencing in 1.0% (1/101) oral swab and 2.0% (1/50) cat fleas, while another 3/50 cat fleas carried B. clarridgeiae. Only 18/101 cats were seronegative against B. henselae, whereas 30.7% (31/101) cats were positive for both IgM and IgG, 8% (18/101) cats had IgM, and 33.7% (34/101) cats had IgG antibody only. None of the eight shelters sampled had Bartonella antibody-free cats. Although abnormal CD4:CD8 ratio was observed in 48/83 seropositive cats, flea infestation was the only significant risk factor observed in this study. Conclusions: The present study provides the first comparison on the Bartonella spp. antigen, antibody status and CD4:CD8 ratio among shelter cats. The high B. henselae seropositivity among shelter cats presumably due to significant flea infestation triggers an alarm of whether the infection could go undetectable and its potential transmission to humans.

Expression of the serotonin 1A receptor in the horse brain

  • Yeonju Choi;Minjung Yoon
    • 한국동물생명공학회지
    • /
    • 제38권2호
    • /
    • pp.77-83
    • /
    • 2023
  • Background: Serotonin receptors can be divided into seven different families with various subtypes. The serotonin 1A (5-HT1A) receptor is one of the most abundant subtypes in animal brains. The expression of 5-HT1A receptors in the brain has been reported in various animals but has not been studied in horses. The 5-HT1A receptor functions related to emotions and behaviors, thus it is important to understand the functional effects and distribution of 5-HT1A receptors in horses to better understand horse behavior and its associated mechanism. Methods: Brain samples from seven different regions, which were the frontal, central, and posterior cerebral cortices, cerebellar cortex and medulla, thalamus, and hypothalamus, were collected from six horses. Western blot analysis was performed to validate the cross-reactivity of rabbit anti-5-HT1A receptor antibody in horse samples. Immunofluorescence was performed to evaluate the localization of 5-HT1A receptors in the brains. Results: The protein bands of 5-HT1A receptor appeared at approximately 50 kDa in the frontal, central, and posterior cerebral cortices, cerebellar cortex, thalamus, and hypothalamus. In contrast, no band was observed in the cerebellar medulla. Immunofluorescence analysis showed that the cytoplasm of neurons in the cerebral cortices, thalamus, and hypothalamus were immunostained for 5-HT1A receptors. In the cerebellar cortex, 5-HT1A was localized in the cytoplasm of Purkinje cells. Conclusions: In conclusion, the study suggests that 5-HT and 5-HT1A receptor systems may play important roles in the central nervous system of horses, based on the widespread distribution of the receptors in the horse brain.

Tube Voltage, DNA Double-Strand Breaks, and Image Quality in Coronary CT Angiography

  • Zhu Xiao Lin;Fan Zhou;U. Joseph Schoepf;Balakrishnan Pillai;Chang Sheng Zhou;Wei Quan;Xue Qin Bao;Guang Ming Lu;Long Jiang Zhang
    • Korean Journal of Radiology
    • /
    • 제21권8호
    • /
    • pp.967-977
    • /
    • 2020
  • Objective: To evaluate the effects of tube voltage on image quality in coronary CT angiography (CCTA), the estimated radiation dose, and DNA double-strand breaks (DSBs) in peripheral blood lymphocytes to optimize the use of CCTA in the era of low radiation doses. Materials and Methods: This study included 240 patients who were divided into 2 groups according to the DNA DSB analysis methods, i.e., immunofluorescence microscopy and flow cytometry. Each group was subdivided into 4 subgroups: those receiving CCTA only with different tube voltages of 120, 100, 80, or 70 kVp. Objective and subjective image quality was evaluated by analysis of variance. Radiation dosages were also recorded and compared. Results: There was no significant difference in demographic characteristics between the 2 groups and 4 subgroups in each group (all p > 0.05). As tube voltage decreased, both image quality and radiation dose decreased gradually and significantly. After CCTA, γ-H2AX foci and mean fluorescence intensity in the 120-, 100-, 80-, and 70-kVp groups increased by 0.14, 0.09, 0.07, and 0.06 foci per cell and 21.26, 9.13, 8.10, and 7.13 (all p < 0.05), respectively. The increase in the DNA DSB level in the 120-kVp group was higher than those in the other 3 groups (all p < 0.05), while there was no significant difference in the DSBs levels among these latter groups (all p > 0.05). Conclusion: The 100-kVp tube voltage may be optimal for CCTA when weighing DNA DSBs against the estimated radiation dose and image quality, with further reductions in tube voltage being unnecessary for CCTA.

Theiler's virus 에 감염된 마우스의 척수 신경교세포배양과 면역세포학적 관찰 (Culture of glial cells isolated from the spinal cord of demyelinating mice infected with Theiler's virus:An immunocytochemical study)

  • 신태균
    • 대한수의학회지
    • /
    • 제31권2호
    • /
    • pp.155-161
    • /
    • 1991
  • The mechanisms of demyelination in Theiler's murine encephalomyelitis virus (TMEV)-induced chronic central nervous system(CNS) disease are still unclear and are probably multifactoral. This study was intended to culture spinal cord cells isolated from TMEV-induced demyelinating mice. By Percoll density centrifugation of enzymatically dissociated tissue, the cells were collected and then cultured on poly-L-lysine-coated plastic coverslips for 2 weeks. Oligodendrocytes, astrocytes and macrophages were identified using cell-type specific markers. Viral antigens were not present in oligodendrocytes and in astrocytes by double immunofluorescence. Affected mouse oligodendrocytes had less capacities of sheet formation and galactocerebroside immunoreactivity than those of control cell 3. These findings support the hypothesis that immune mediated mechanisms play an important role in the process of demyelination in this animal model.

  • PDF