DOI QR코드

DOI QR Code

Expression of the serotonin 1A receptor in the horse brain

  • Yeonju Choi (Department of Animal Science and Biotechnology, Kyungpook National University) ;
  • Minjung Yoon (Department of Horse, Companion and Wild Animal Science, Kyungpook National University)
  • Received : 2023.04.25
  • Accepted : 2023.06.14
  • Published : 2023.06.30

Abstract

Background: Serotonin receptors can be divided into seven different families with various subtypes. The serotonin 1A (5-HT1A) receptor is one of the most abundant subtypes in animal brains. The expression of 5-HT1A receptors in the brain has been reported in various animals but has not been studied in horses. The 5-HT1A receptor functions related to emotions and behaviors, thus it is important to understand the functional effects and distribution of 5-HT1A receptors in horses to better understand horse behavior and its associated mechanism. Methods: Brain samples from seven different regions, which were the frontal, central, and posterior cerebral cortices, cerebellar cortex and medulla, thalamus, and hypothalamus, were collected from six horses. Western blot analysis was performed to validate the cross-reactivity of rabbit anti-5-HT1A receptor antibody in horse samples. Immunofluorescence was performed to evaluate the localization of 5-HT1A receptors in the brains. Results: The protein bands of 5-HT1A receptor appeared at approximately 50 kDa in the frontal, central, and posterior cerebral cortices, cerebellar cortex, thalamus, and hypothalamus. In contrast, no band was observed in the cerebellar medulla. Immunofluorescence analysis showed that the cytoplasm of neurons in the cerebral cortices, thalamus, and hypothalamus were immunostained for 5-HT1A receptors. In the cerebellar cortex, 5-HT1A was localized in the cytoplasm of Purkinje cells. Conclusions: In conclusion, the study suggests that 5-HT and 5-HT1A receptor systems may play important roles in the central nervous system of horses, based on the widespread distribution of the receptors in the horse brain.

Keywords

Acknowledgement

The authors thank Heejun Jung, Junyoung Kim, Sungmin Kim, Youngwook Jung, and Yubin Song for their assistance with sample collection.

References

  1. Albert PR and Vahid-Ansari F. 2019. The 5-HT1A receptor: signaling to behavior. Biochimie 161:34-45. https://doi.org/10.1016/j.biochi.2018.10.015
  2. Azmitia EC, Gannon PJ, Kheck NM, Whitaker-Azmitia PM. 1996. Cellular localization of the 5-HT1A receptor in primate brain neurons and glial cells. Neuropsychopharmacology 14:35-46. https://doi.org/10.1016/S0893-133X(96)80057-1
  3. Bacque-Cazenave J, Bharatiya R, Barriere G, Delbecque JP, Bouguiyoud N, Di Giovanni G, Cattaert D, De Deurwaerdere P. 2020. Serotonin in animal cognition and behavior. Int. J. Mol. Sci. 21:1649.
  4. Berger M, Gray JA, Roth BL. 2009. The expanded biology of serotonin. Annu. Rev. Med. 60:355-366. https://doi.org/10.1146/annurev.med.60.042307.110802
  5. Bishop GA and Ho RH. 1985. The distribution and origin of serotonin immunoreactivity in the rat cerebellum. Brain Res. 331:195-207. https://doi.org/10.1016/0006-8993(85)91545-8
  6. Bonnin A, Peng W, Hewlett W, Levitt P. 2006. Expression mapping of 5-HT1 serotonin receptor subtypes during fetal and early postnatal mouse forebrain development. Neuroscience 141:781-794. https://doi.org/10.1016/j.neuroscience.2006.04.036
  7. Brubaker L and Udell MA. 2016. Cognition and learning in horses (Equus caballus): what we know and why we should ask more. Behav. Processes 126:121-131. https://doi.org/10.1016/j.beproc.2016.03.017
  8. Chalmers DT and Watson SJ. 1991. Comparative anatomical distribution of 5-HT1A receptor mRNA and 5-HT1A binding in rat brain--a combined in situ hybridisation/in vitro receptor autoradiographic study. Brain Res. 561:51-60. https://doi.org/10.1016/0006-8993(91)90748-K
  9. Choi Y, Jung Y, Kim S, Kim J, Jung H, Yoon M. 2020. Stagedependent expression of protein gene product 9.5 in donkey testes. Animals (Basel) 10:2169.
  10. de Almeida J and Mengod G. 2008. Serotonin 1A receptors in human and monkey prefrontal cortex are mainly expressed in pyramidal neurons and in a GABAergic interneuron subpopulation: implications for schizophrenia and its treatment. J. Neurochem. 107:488-496. https://doi.org/10.1111/j.1471-4159.2008.05649.x
  11. de Boer SF and Koolhaas JM. 2005. 5-HT1A and 5-HT1B receptor agonists and aggression: a pharmacological challenge of the serotonin deficiency hypothesis. Eur. J. Pharmacol. 526:125-139. https://doi.org/10.1016/j.ejphar.2005.09.065
  12. Gundlah C, Pecins-Thompson M, Schutzer WE, Bethea CL. 1999. Ovarian steroid effects on serotonin 1A, 2A and 2C receptor mRNA in macaque hypothalamus. Brain Res. Mol. Brain Res. 63:325-339. https://doi.org/10.1016/S0169-328X(98)00295-2
  13. Hadjighassem MR, Austin MC, Szewczyk B, Daigle M, Stockmeier CA, Albert PR. 2009. Human Freud-2/CC2D1B: a novel repressor of postsynaptic serotonin-1A receptor expression. Biol. Psychiatry 66:214-222. https://doi.org/10.1016/j.biopsych.2009.02.033
  14. Hall H, Lundkvist C, Halldin C, Farde L, Pike VW, McCarron JA, Fletcher A, Cliffe IA, Barf T, Wikstrom H, Sedvall G. 1997. Autoradiographic localization of 5-HT1A receptors in the post-mortem human brain using [3H]WAY-100635 and [11C] way-100635. Brain Res. 745:96-108. https://doi.org/10.1016/S0006-8993(96)01131-6
  15. Hannon J and Hoyer D. 2008. Molecular biology of 5-HT receptors. Behav. Brain Res. 195:198-213. https://doi.org/10.1016/j.bbr.2008.03.020
  16. Hori Y, Tozaki T, Nambo Y, Sato F, Ishimaru M, Inoue-Murayama M, Fujita K. 2016. Evidence for the effect of serotonin receptor 1A gene (HTR1A) polymorphism on tractability in Thoroughbred horses. Anim. Genet. 47:62-67. https://doi.org/10.1111/age.12384
  17. Ito H, Halldin C, Farde L. 1999. Localization of 5-HT1A receptors in the living human brain using [carbonyl-11C]WAY-100635: PET with anatomic standardization technique. J. Nucl. Med. 40:102-109.
  18. Jones EG. 1985. Principles of thalamic organization. In: Jones EG (Ed.), The Thalamus, Springer, Boston, pp. 85-149.
  19. Kim J, Park Y, Kim EJ, Jung H, Yoon M. 2021. Relationship between oxytocin and serotonin and the fearfulness, dominance, and trainability of horses. J. Anim. Sci. Technol. 63:453-460. https://doi.org/10.5187/jast.2021.e29
  20. Lanfumey L and Hamon M. 2000. Central 5-HT1A receptors: regional distribution and functional characteristics. Nucl. Med. Biol. 27:429-435. https://doi.org/10.1016/S0969-8051(00)00107-4
  21. Medica P, Giunta RP, Bruschetta G, Ferlazzo AM. 2020. The influence of training and simulated race on horse plasma serotonin levels. J. Equine Vet. Sci. 84:102818.
  22. Monckton JE and McCormick DA. 2002. Neuromodulatory role of serotonin in the ferret thalamus. J. Neurophysiol. 87:2124-2136. https://doi.org/10.1152/jn.00650.2001
  23. Mosienko V, Beis D, Pasqualetti M, Waider J, Matthes S, Qadri F, Bader M, Alenina N. 2015. Life without brain serotonin: reevaluation of serotonin function with mice deficient in brain serotonin synthesis. Behav. Brain Res. 277:78-88. https://doi.org/10.1016/j.bbr.2014.06.005
  24. Ogren SO, Eriksson TM, Elvander-Tottie E, D'Addario C, Ekstrom JC, Svenningsson P, Meister B, Kehr J, Stiedl O. 2008. The role of 5-HT1A receptors in learning and memory. Behav. Brain Res. 195:54-77. https://doi.org/10.1016/j.bbr.2008.02.023
  25. Parsey RV, Arango V, Olvet DM, Oquendo MA, Van Heertum RL, John Mann J. 2005. Regional heterogeneity of 5-HT1A receptors in human cerebellum as assessed by positron emission tomography. J. Cereb. Blood Flow Metab. 25:785-793. https://doi.org/10.1038/sj.jcbfm.9600072
  26. Rasul A, Johansson B, Lonne-Rahm SB, Nordlind K, Theodorsson E, El-Nour H. 2013. Chronic mild stress modulates 5-HT1A and 5-HT2A receptor expression in the cerebellar cortex of NC/Nga atopic-like mice. Arch. Dermatol. Res. 305:407-413. https://doi.org/10.1007/s00403-013-1325-x
  27. Saper CB and Lowell BB. 2014. The hypothalamus. Curr. Biol. 24:R1111-R1116. https://doi.org/10.1016/j.cub.2014.10.023
  28. Steriade M and McCarley RW. 2013. Brainstem Control of Wakefulness and Sleep. Springer Science & Business Media, New York, pp. 124-126.
  29. Thompson MR, Callaghan PD, Hunt GE, Cornish JL, McGregor IS. 2007. A role for oxytocin and 5-HT1A receptors in the prosocial effects of 3,4 methylenedioxymethamphetamine ("ecstasy"). Neuroscience 146:509-514. https://doi.org/10.1016/j.neuroscience.2007.02.032
  30. Voogd J and Glickstein M. 1998. The anatomy of the cerebellum. Trends Cogn. Sci. 2:307-313. https://doi.org/10.1016/S1364-6613(98)01210-8
  31. Wolf U, Rapoport MJ, Schweizer TA. 2009. Evaluating the affective component of the cerebellar cognitive affective syndrome. J. Neuropsychiatry Clin. Neurosci. 21:245-253. https://doi.org/10.1176/jnp.2009.21.3.245
  32. Zschucke E, Renneberg B, Dimeo F, Wustenberg T, Strohle A. 2015. The stress-buffering effect of acute exercise: evidence for HPA axis negative feedback. Psychoneuroendocrinology 51:414-425. https://doi.org/10.1016/j.psyneuen.2014.10.019