• Title/Summary/Keyword: immunity gene

Search Result 288, Processing Time 0.029 seconds

The serodiagnosis of a lymphocystis disease virus infection using an antibody raised against a recombinant major capsid protein

  • Seo, Ja-Young;Kang, Bong-Jo;Oh, Hyoung-Jong;Lee, Jae-Il;Kim, Tae-Jung
    • Journal of fish pathology
    • /
    • v.21 no.3
    • /
    • pp.175-180
    • /
    • 2008
  • Lymphocystis is a viral disease of fish primarily in marine and brackishwaters. Here we report the cloning, expression, and the serological applications of the lymphocystis disease virus (LCDV) major capsid protein (MCP). The MCP gene was amplified by PCR from the genomic DNA of LCDV isolated from Schlegel's black rockfish, Sebastes schlegeli, and expressed in E. coli. Mouse antisera raised against the purified recombinant MCP (rMCP) reacted with the viral MCP in an immunofluorescence assay, indicating that this rMCP would be useful for serological studies of field samples.

A Rice Blast Fungus Alpha-N-Arabinofuranosidase B Elicits Host Defense in Rice

  • Kim, Sun-Tae
    • 한국균학회소식:학술대회논문집
    • /
    • 2015.11a
    • /
    • pp.23-23
    • /
    • 2015
  • Rice blast disease caused by M. oryzae is the most devastating fungal disease in rice. During the infection process, M. oryzae secretes a large number of glycosyl hydrolase (GH) proteins into the apoplast to digest host cell wall and assist fungal ingress into host tissues. In this study, we identified a novel M. oryze arabinofuranosidase B (MoAbfB) which is secreted during fungal infection. Live-cell imaging exhibited that fluorescent labeled MoAbfB was highly accumulated in fungal invasive structures such as appressorium, tips of penetration peg, biotrophic interfacial complex (BIC), as well as invasive hyphal tip. Deletion of MoAbfB mutants extended biotrophic phase followed by enhanced disease severity, whereas, over-expression of OsMoAbfB mutant induced rapid defense responses and enhanced rice resistance to M. oryzae infection. Furthermore, exogenous treatment of MoAbfB protein showed inhibition of fungal infection via priming of defense gene expression. We later found that the extract of MoAbfB degraded rice cell wall fragments could also induce host defense activation, suggesting that not MoAbfB itself but oligosaccharides (OGs) derived from MoAbfB dissolved rice cell wall elicited rice innate immunity.

  • PDF

Perspectives of AIDS Vaccine Development: T Cell-based Vaccine

  • Sung, Young Chul
    • IMMUNE NETWORK
    • /
    • v.2 no.1
    • /
    • pp.1-5
    • /
    • 2002
  • Estimated number of adults and children newly infected with HIV-1 during 2001 alone is 5 million in total. An effective vaccine, in addition to education & public health approaches, has been believed to be the best option to stop the HIV-1 transmission, especially for developing countries. Among AIDS vaccine candidates, DNA vaccine is relatively safe and, in a certain extent, mimics some attributes of live attenuated vaccine, with regard to in vivo gene expression & the type of immunity induced. We recently demonstrated that DNA vaccines expressing SIVmac239 structural and regulatory genes, augmented with coadministration of IL-12 mutant induced the strongest T cell responses, resulting in low to undetectable setpoint viral loads, stable $CD4^+$ T cell counts, and no evidence of clinical diseases or mortality by day 420 after challenge. This finding is the second demonstration, following the protective result of live attenuated SIV vaccine in SIVmac-rhesus monkey model, which was known to have safety problem. So, our DNA vaccines could give a significant impact on HIV-1 epidemic by slowing or stopping the spread of HIV-1, leading to eventual eradication of HIV-1 and AIDS in the population.

A Novel Type of Non-coding RNA, nc886, Implicated in Tumor Sensing and Suppression

  • Lee, Yong Sun
    • Genomics & Informatics
    • /
    • v.13 no.2
    • /
    • pp.26-30
    • /
    • 2015
  • nc886 (=vtRNA2-1, pre-miR-886, or CBL3) is a newly identified non-coding RNA (ncRNA) that represses the activity of protein kinase R (PKR). nc886 is transcribed by RNA polymerase III (Pol III) and is intriguingly the first case of a Pol III gene whose expression is silenced by CpG DNA hypermethylation in several types of cancer. PKR is a sensor protein that recognizes evading viruses and induces apoptosis to eliminate infected cells. Like viral infection, nc886 silencing activates PKR and induces apoptosis. Thus, the significance of the nc886:PKR pathway in cancer is to sense and eliminate pre-malignant cells, which is analogous to PKR's role in cellular innate immunity. Beyond this tumor sensing role, nc886 plays a putative tumor suppressor role as supported by experimental evidence. Collectively, nc886 provides a novel example how epigenetic silencing of a ncRNA contributes to tumorigenesis by controlling the activity of its protein ligand.

Complete genome sequence of Clostridium perfringens B20, a bacteriocin-producing pathogen

  • Elnar, Arxel G.;Kim, Geun-Bae
    • Journal of Animal Science and Technology
    • /
    • v.63 no.6
    • /
    • pp.1468-1472
    • /
    • 2021
  • Clostridium perfringens B20 was isolated from chicken feces collected from a local farm associated with Chung-Ang University (Anseong, Korea). The whole genome of C. perfringens B20 was sequenced using the PacBio RS II platform and assembled de novo. The genome is 2,982,563 bp long and assembled in two contigs. Annotation analyses revealed 2,668 protein-coding sequences, 30 rRNA genes, and 94 tRNA genes, with 28.2% G + C (guanine + cytosine) content. In silico genomic analysis revealed the presence of genes encoding a class IId bacteriocin, lactococcin A, and associated ABC transporter and immunity proteins, as well as a putative bacteriocin gene.

RNA Modification and Its Implication in Plant Pathogenic Fungi

  • Jeon, Junhyun;Lee, Song Hee
    • The Plant Pathology Journal
    • /
    • v.37 no.6
    • /
    • pp.505-511
    • /
    • 2021
  • Interaction of a pathogen with its host plant requires both flexibility and rapid shift in gene expression programs in response to environmental cues associated with host cells. Recently, a growing volume of data on the diversity and ubiquity of internal RNA modifications has led to the realization that such modifications are highly dynamic and yet evolutionarily conserved system. This hints at these RNA modifications being an additional regulatory layer for genetic information, culminating in epitranscriptome concept. In plant pathogenic fungi, however, the presence and the biological roles of RNA modifications are largely unknown. Here we delineate types of RNA modifications, and provide examples demonstrating roles of such modifications in biology of filamentous fungi including fungal pathogens. We also discuss the possibility that RNA modification systems in fungal pathogens could be a prospective target for new agrochemicals.

Swine Leukocyte Antigen-DQA Gene Variation and Its Association with Piglet Diarrhea in Large White, Landrace and Duroc

  • Yang, Q.L.;Kong, J.J.;Wang, D.W.;Zhao, S.G.;Gun, S.B.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.8
    • /
    • pp.1065-1071
    • /
    • 2013
  • The swine leukocyte antigen class II molecules are possibly associated with the induction of protective immunity. The study described here was to investigate the relationship between polymorphisms in exon 2 of the swine DQA gene and piglet diarrhea. This study was carried out on 425 suckling piglets from three purebred pig strains (Large White, Landrace and Duroc). The genetic diversity of exon 2 in swine DQA was detected by PCR-SSCP and sequencing analysis, eight unique SSCP patterns (AB, BB, BC, CC, CD, BD, BE and DD) representing five specific allele (A to E) sequences were detected. Sequence analysis revealed 21 nucleotide variable sites and resulting in 12 amino acid substitutions in the populations. A moderate level polymorphism and significant deviations from Hardy-Weinberg equilibrium of the genotypes distribution were observed in the populations (p<0.01). The association analysis indicated that there was a statistically significant difference in the score of piglet diarrhea between different genotypes, individuals with genotype CC showed a lower diarrhea score than genotypes AB ($0.98{\pm}0.09$), BB ($0.85{\pm}0.77$) and BC ($1.25{\pm}0.23$) (p<0.05), and significantly low than genotype BE ($1.19{\pm}0.19$) (p<0.01), CC genotype may be a most resistance genotype for piglet diarrhea.

Paradigm of Time-sequence Development of the Intestine of Suckling Piglets with Microarray

  • Sun, Yunzi;Yu, Bing;Zhang, Keying;Chen, Xijian;Chen, Daiwen
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.10
    • /
    • pp.1481-1492
    • /
    • 2012
  • The interaction of the genes involved in intestinal development is the molecular basis of the regulatory mechanisms of intestinal development. The objective of this study was to identify the significant pathways and key genes that regulate intestinal development in Landrace piglets, and elucidate their rules of operation. The differential expression of genes related to intestinal development during suckling time was investigated using a porcine genome array. Time sequence profiles were analyzed for the differentially expressed genes to obtain significant expression profiles. Subsequently, the most significant profiles were assayed using Gene Ontology categories, pathway analysis, network analysis, and analysis of gene co-expression to unveil the main biological processes, the significant pathways, and the effective genes, respectively. In addition, quantitative real-time PCR was carried out to verify the reliability of the results of the analysis of the array. The results showed that more than 8000 differential expression transcripts were identified using microarray technology. Among the 30 significant obtained model profiles, profiles 66 and 13 were the most significant. Analysis of profiles 66 and 13 indicated that they were mainly involved in immunity, metabolism, and cell division or proliferation. Among the most effective genes in these two profiles, CN161469, which is similar to methylcrotonoyl-Coenzyme A carboxylase 2 (beta), and U89949.1, which encodes a folate binding protein, had a crucial influence on the co-expression network.

Comparison of gloverin gene expression patterns between domesticated and wild silkworms

  • Kim, Seong-Ryul;Choi, Kwang-Ho;Kim, Sung-Wan;Park, Seung-Won
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.33 no.2
    • /
    • pp.113-120
    • /
    • 2016
  • Bombyx mandarina is widely accepted as ancestor of B. mori. Silkworms are served as well-characterized models for understanding the mechanism for the genetic regulation of development. In this study, we performed RNA-Seq analysis to examine tissue-expression of gloverin isoforms of the silk-gland, mid-gut, and fat body in B. mandarina. BLAST analysis revealed that four gloverin isoform gene sequences of B. mandarina were highly similar to B. mori. To identify the difference between two species, the expression profile of gloverin was measured by semi- RT-PCR analysis. The specific expression of gloverin isoform genes was observed mainly in the fat body from B. mori but not B. mandarina. However, all of tissues in the wild-type silkworm could induce the upregulation of compared with the B. mori. To validate the sudden increase in gloverin gene expression in the mid-gut tissue of B. mandarina, we were using qRT-PCR. Relative mRNA expression rate of gloverin at the wild-type silkworm was much higher than domestic silkworm. Comparative genomics between domesticated and wild silkworms showed different tissue-expression levels in some of immune related genes. These results are suggesting a trend toward decreasing immunity related genes expression during domestication. Further studies are needed to elucidate the silkworm domestication and an invaluable resource for wild silkworm genomics research.

Conjugated Linoleic Acid as a Key Regulator of Performance, Lipid Metabolism, Development, Stress and Immune Functions, and Gene Expression in Chickens

  • Choi, Yang-Ho
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.3
    • /
    • pp.448-458
    • /
    • 2009
  • It has been well documented from animal and human studies that conjugated linoleic acid (CLA) has numerous beneficial effects on health. In chickens, CLA exerts many effects on performance ranging from egg quality and yolk lipids to meat quality. Although there are several CLA isomers available, not all CLA isomers have the same incorporation rates into egg yolk: cis-9,trans-11 and trans-10,cis-12 CLA isomers are more favorably deposited into egg yolk than other isomers investigated, but of the two isomers, the former has a higher incorporation rate than the latter. CLA alters the amounts and profiles of lipids in plasma, muscles and liver. Furthermore, increased liver weight was reported in chickens fed dietary CLA. As observed in egg yolk, marked reduction in intramuscular lipids as well as increased protein content was observed in different studies, leading to elevation in protein-to-fat ratio. Inconsistency exists for parameters such as body weight gain, feed intake, feed conversion ratio, egg production rate and mortality, depending upon experimental conditions. One setback is that hard-cooked yolks from CLA-consuming hens have higher firmness as refrigeration time and CLA are increased, perhaps owing to alterations in physico-chemistry of yolk. Another is that CLA can be detrimental to hatchability when provided to breeders: eggs from these breeders have impaired development in embryonic and neonatal stages, and have increased and decreased amounts of saturated fatty acids and monounsaturated fatty acids (MUFAs), respectively. Thus, both problems can be fully resolved if dietary sources rich in MUFAs are provided together with CLA. Emerging evidence suggests that CLA exerts a critical impact on stress and immune functions as it can completely nullify some of the adverse effects produced by immune challenges and reduce mortality in a dose-dependent manner. Finally, CLA is a key regulator of genes that may be responsible for lipid metabolism in chickens. CLA down-regulates both expression of the gene encoding stearoyl-CoA desaturase-1 and its protein activity in the chicken liver while up-regulating mRNA of sterol regulatory element-binding protein-l.