Browse > Article
http://dx.doi.org/10.5187/jast.2021.e113

Complete genome sequence of Clostridium perfringens B20, a bacteriocin-producing pathogen  

Elnar, Arxel G. (Department of Animal Science and Technology, Chung-Ang University)
Kim, Geun-Bae (Department of Animal Science and Technology, Chung-Ang University)
Publication Information
Journal of Animal Science and Technology / v.63, no.6, 2021 , pp. 1468-1472 More about this Journal
Abstract
Clostridium perfringens B20 was isolated from chicken feces collected from a local farm associated with Chung-Ang University (Anseong, Korea). The whole genome of C. perfringens B20 was sequenced using the PacBio RS II platform and assembled de novo. The genome is 2,982,563 bp long and assembled in two contigs. Annotation analyses revealed 2,668 protein-coding sequences, 30 rRNA genes, and 94 tRNA genes, with 28.2% G + C (guanine + cytosine) content. In silico genomic analysis revealed the presence of genes encoding a class IId bacteriocin, lactococcin A, and associated ABC transporter and immunity proteins, as well as a putative bacteriocin gene.
Keywords
Clostridium perfringens; Whole genome sequence; Pathogen; Virulence; Bacteriocin; Lactococcin A;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Cuevas-Gonzalez PF, Liceaga AM, Aguilar-Toala JE. Postbiotics and paraprobiotics: from concepts to applications. Food Res Int. 2020;136:109502. https://doi.org/10.1016/j.foodres.2020.109502   DOI
2 Moradi M, Kousheh SA, Almasi H, Alizadeh A, Guimaraes JT, Yilmaz N, et al. Postbiotics produced by lactic acid bacteria: the next frontier in food safety. Compr Rev Food Sci Food Saf. 2020;19:3390-415. https://doi.org/10.1111/1541-4337.12613   DOI
3 Villagran-de la Mora Z, Macias-Rodriguez ME, Arratia-Quijada J, Gonzalez-Torres YS, Nuno K, Villarruel-Lopez A. Clostridium perfringens as foodborne pathogen in broiler production: pathophysiology and potential strategies for controlling necrotic enteritis. Animals. 2020;10:1718. https://doi.org/10.3390/ani10091718   DOI
4 Nawrocki EP, Eddy SR. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics. 2013;29:2933-5. https://doi.org/10.1093/bioinformatics/btt509   DOI
5 Holo H, Nilssen O, Nes IF. Lactococcin A, a new bacteriocin from Lactococcus lactis subsp. cremoris: isolation and characterization of the protein and its gene. J Bacteriol. 1991;173:3879-87. https://doi.org/10.1128/jb.173.12.3879-3887.1991   DOI
6 Kiu R, Caim S, Alexander S, Pachori P, Hall LJ. Probing genomic aspects of the multi-host pathogen Clostridium perfringens reveals significant pangenome diversity, and a diverse array of virulence factors. Front Microbiol. 2017;8:2485. https://doi.org/10.3389/fmicb.2017.02485   DOI
7 Heo S, Kim MG, Kwon M, Lee HS, Kim GB. Inhibition of Clostridium perfringens using bacteriophages and bacteriocin producing strains. Korean J Food Sci Anim Resour. 2018;38:88-98. https://doi.org/10.5851/kosfa.2018.38.1.88   DOI
8 Acedo JZ, Chiorean S, Vederas JC, van Belkum MJ. The expanding structural variety among bacteriocins from Gram-positive bacteria. FEMS Microbiol Rev. 2018;42:805-28. https://doi.org/10.1093/femsre/fuy033   DOI
9 Chan PP, Lowe TM. tRNAscan-SE: searching for tRNA genes in genomic sequences. Methods Mol Biol. 2019;1962:1-14. https://doi.org/10.1007/978-1-4939-9173-0_1   DOI
10 Hyatt D, Chen GL, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics. 2010;11:119. https://doi.org/10.1186/1471-2105-11-119   DOI