Browse > Article
http://dx.doi.org/10.5713/ajas.2012.12004

Paradigm of Time-sequence Development of the Intestine of Suckling Piglets with Microarray  

Sun, Yunzi (School of Life Science, Guizhou Normal University)
Yu, Bing (Animal Nutrition Institute, Sichuan Agricultural University)
Zhang, Keying (Animal Nutrition Institute, Sichuan Agricultural University)
Chen, Xijian (Genminix Informatics Ltd. Co.)
Chen, Daiwen (Animal Nutrition Institute, Sichuan Agricultural University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.25, no.10, 2012 , pp. 1481-1492 More about this Journal
Abstract
The interaction of the genes involved in intestinal development is the molecular basis of the regulatory mechanisms of intestinal development. The objective of this study was to identify the significant pathways and key genes that regulate intestinal development in Landrace piglets, and elucidate their rules of operation. The differential expression of genes related to intestinal development during suckling time was investigated using a porcine genome array. Time sequence profiles were analyzed for the differentially expressed genes to obtain significant expression profiles. Subsequently, the most significant profiles were assayed using Gene Ontology categories, pathway analysis, network analysis, and analysis of gene co-expression to unveil the main biological processes, the significant pathways, and the effective genes, respectively. In addition, quantitative real-time PCR was carried out to verify the reliability of the results of the analysis of the array. The results showed that more than 8000 differential expression transcripts were identified using microarray technology. Among the 30 significant obtained model profiles, profiles 66 and 13 were the most significant. Analysis of profiles 66 and 13 indicated that they were mainly involved in immunity, metabolism, and cell division or proliferation. Among the most effective genes in these two profiles, CN161469, which is similar to methylcrotonoyl-Coenzyme A carboxylase 2 (beta), and U89949.1, which encodes a folate binding protein, had a crucial influence on the co-expression network.
Keywords
Intestinal Development; Microarray; Gene; Expression Profile; Network;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Yu, H., N. M. Luscombe, J. Qian and M. Gerstein. 2003. Genomic analysis of gene expression relationships in transcriptional regulatory networks. Trends Genet. 19:422-427.   DOI   ScienceOn
2 Shalgi, R., D. Lieber, M. Oren and Y. Pilpel. 2007. Global and local architecture of the mammalian microRNA-transcription factor regulatory network. PLoS Comput. Biol. 3:e131.   DOI   ScienceOn
3 Smidtas, S., A. Yartseva, V. Schachter and F. Kepes. 2006. Model of interactions in biology and application to heterogeneous network in yeast. C. R. Biol. 329:945-952.   DOI   ScienceOn
4 Stears, R. L., T. Martinsky and M. Schena. 2003. Trends in microarray analysis. Nat. Med. 9:140-145.   DOI   ScienceOn
5 Thaler, J. P. and D. E. Cummings. 2008. Metabolism: food alert. Nature 452:941-942.   DOI   ScienceOn
6 Thompson, C. L., B. Wang and A. J. Holmes. 2008. The immediate environment during postnatal development has long-term impact on gut community structure in pigs. ISME J. 2:739-748.   DOI   ScienceOn
7 Tomita, M., K. Hashimoto, K. Takahashi, T. S. Shimizu, Y. Matsuzaki, F. Miyoshi, K. Saito, S. Tanida, K. Yugi, J. C. Venter and C. A. Hutchison. 3rd, 1999. E-CELL:software environment for whole-cell simulation. Bioinformatics 15:72-84.   DOI   ScienceOn
8 Vallet, J. L., T. P. Smith, T. S. Sonstegard, M. Heaton and S. C. Fahrenkrug. 2001. Structure of the genes for porcine endometrial secreted and membrane folate binding proteins. Domest. Anim. Endocrinol. 21:55-72.   DOI   ScienceOn
9 Weaver, L. T., S. Austin and T. J. Cole. 1991. Small intestinal length: a factor essential for gut adaptation. Gut 32:1321-1323.   DOI   ScienceOn
10 Wechter, W. P., A. Levi, K. R. Harris, A. R. Davis, Z. Fei, N. Katzir, J. J. Giovannoni, A. Salman-Minkov, A. Hernandez, J. Thimmapuram, Y. Tadmor, V. Portnoy and T. Trebitsh. 2008. Gene expression in developing watermelon fruit. BMC Genomics 9:275.   DOI   ScienceOn
11 Young, R. A. 2000. Biomedical discovery with DNA arrays. Cell 102:9-15.   DOI   ScienceOn
12 Nikiforova, V. J. and L. Willmitzer. 2007. Network visualization and network analysis. EXS 97:245-275.
13 Pan, L., M. Deng, X. Xie and L. Gan. 2008. ISL1 and BRN3B co-regulate the differentiation of murine retinal ganglion cells. Development 135:1981-1990.   DOI   ScienceOn
14 Ojeda, N. B., D. Grigore and B. T. Alexander. 2008. Developmental programming of hypertension: insight from animal models of nutritional manipulation. Hypertension 52: 44-50.   DOI   ScienceOn
15 Oltvai, Z. N. and A. L. Barabasi. 2002. Systems biology. Life's complexity pyramid. Science 298:763-764.   DOI   ScienceOn
16 Pacha, J. 2000. Development of intestinal transport function in mammals. Physiol. Rev. 80:1633-1667.
17 Ravasz, E., A. L. Somera, D. A. Mongru, Z. N. Oltvai and A. L. Barabasi. 2002. Hierarchical organization of modularity in metabolic networks. Science 297:1551-1555.   DOI   ScienceOn
18 Rawat, A., G. J. Seifert and Y. Deng. 2008. Novel implementation of conditional co-regulation by graph theory to derive co-expressed genes from microarray data. BMC Bioinformatics 9 (Suppl 9):S7.   DOI
19 Sarkar, S. A., S. Kobberup, R. Wong, A. D. Lopez, N. Quayum, T. Still, A. Kutchma, J. N. Jensen, R. Gianani, G. M. Beattie, J. Jensen, A. Hayek and J. C. Hutton. 2008. Global gene expression profiling and histochemical analysis of the developing human fetal pancreas. Diabetologia 51:285-297.   DOI
20 Schlitt, T., K. Palin, J. Rung, S. Dietmann, M. Lappe, E. Ukkonen and A. Brazma. 2003. From gene networks to gene function. Genome Res. 13:2568-2576.   DOI   ScienceOn
21 Schweikl, H., K. A. Hiller, A. Eckhardt, C. Bolay, G. Spagnuolo, T. Stempfl and G. Schmalz. 2008. Differential gene expression involved in oxidative stress response caused by triethylene glycol dimethacrylate. Biomaterials 29:1377-1387.   DOI   ScienceOn
22 Huber, W., V. J. Carey, L. Long, S. Falcon and R. Gentleman. 2007. Graphs in molecular biology. BMC Bioinformatics 8(Suppl 6): S8.   DOI
23 Gracey, A. Y., E. J. Fraser, W. Li, Y. Fang, R. R. Taylor, J. Rogers, A. Brass and A. R. Cossins. 2004. Coping with cold: An integrative, multitissue analysis of the transcriptome of apoikilothermic vertebrate. Proc. Natl. Acad. Sci. USA. 101: 16970-16975.   DOI   ScienceOn
24 Hall, G. A. and T. F. Byrne. 1989. Effects of age and diet on small intestinal structure and function in gnotobiotic piglets. Res. Vet. Sci. 47:387-392.
25 Han, J. D. 2008. Understanding biological functions through molecular networks. Cell Res. 18:224-237.   DOI   ScienceOn
26 Jiang, Y. and M. K. Deyholos. 2006. Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes. BMC Plant Biol. 6: 25.   DOI   ScienceOn
27 Kanehisa, M. and S. Goto. 2000. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28:27-30.   DOI   ScienceOn
28 Kim, J. G. and J. L. Vallet. 2004. Secreted and placental membrane forms of folate-binding protein occur sequentially during pregnancy in swine. Biol. Reprod. 71:1214-1219.   DOI   ScienceOn
29 Kitano, H. 2002. Systems biology: a brief overview. Science 295: 1662-1664.   DOI   ScienceOn
30 Zhang, J., X. K. Teng, L. Z. Si, P. T. Zhou, X. Y. Kong and L. D. Hu. 2008. New evidence for the involvement of the EGF receptor pathway in hair follicle morphogenesis in uncv mice. Genes Genomics 30:347-353.
31 Lee, J. M., E. P. Gianchandani, J. A. Eddy and J. A. Papin. 2008. Dynamic analysis of integrated signaling, metabolic, and regulatory networks. PLoS Comput Biol 4, e1000086.   DOI   ScienceOn
32 Caicedo, R. A., R. J. Schanler, N. Li and J. Neu. 2005. The developing intestinal ecosystem: implications for the neonate. Pediatr. Res. 58:625-628.   DOI   ScienceOn
33 Lunney, J. K. 2007. Advances in swine biomedical model genomics. Int. J. Biol. Sci. 3:179-184.   DOI
34 Buddington, R. K. 1994. Nutrition and ontogenetic development of the intestine. Can. J. Physiol. Pharmacol. 72:251-259.   DOI   ScienceOn
35 Butler, J. E. and M. Sinkora. 2007. The isolator piglet: a model for studying the development of adaptive immunity. Immunol. Res. 39:33-51.   DOI
36 Carlson, M. R., B. Zhang, Z. Fang, P. S. Mischel, S. Horvath and S. F. Nelson. 2006. Gene connectivity, function, and sequence conservation: predictions from modular yeast co-expression networks. BMC Genomics 7:40.   DOI
37 Commare, C. E. and K. A. Tappenden. 2007. Development of the infant intestine: implications for nutrition support. Nutr. Clin. Pract. 22:159-173.   DOI
38 Covington, M. F., J. N. Maloof, M. Straume, S. A. Kay and S. L. Harmer. 2008. Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development. Genome Biol. 9:R130.   DOI   ScienceOn
39 Davidson, E. H., J. P. Rast, P. Oliveri, A. Ransick, C. Calestani, C. H. Yuh, T. Minokawa, G. Amore, V. Hinman, C. Arenas-Mena, O. Otim, C. T. Brown, C. B. Livi, P. Y. Lee, R. Revilla, A. G. Rust, Z. Pan, M. J. Schilstra, P. J. Clarke, M. I. Arnone, L. Rowen, R. A. Cameron, D. R. McClay, L. Hood and H. Bolouri. 2002. A genomic regulatory network for development. Science 295:1669-1678.   DOI   ScienceOn
40 Donovan, S. M. 2006. Role of human milk components in gastrointestinal development: Current knowledge and future NEEDS. J. Pediatr. 149:13.
41 Barabasi, A. L. and Z. N. Oltvai. 2004. Network biology: understanding the cell's functional organization. Nat. Rev. Genet. 5:101-113.   DOI   ScienceOn
42 Ernst, J., G. J. Nau and Z. Bar-Joseph. 2005. Clustering short time series gene expression data. Bioinformatics 21(Suppl 1):159-168.   DOI   ScienceOn
43 Gilbert, D. and D. Lloyd. 2000. The living cell: a complex autodynamic multi-oscillator system? Cell Biol. Int. 24:569-580.   DOI   ScienceOn
44 Altaf-Ul-Amin, M., Y. Shinbo, K. Mihara, K. Kurokawa and S. Kanaya. 2006. Development and implementation of an algorithm for detection of protein complexes in large interaction networks. BMC Bioinformatics 7:207.   DOI
45 Ashburner, M., C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M. Cherry, A. P. Davis, K. Dolinski, S. S. Dwight and J. T. Eppig et al. 2000. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25:25-29.   DOI   ScienceOn