• 제목/요약/키워드: immune-related genes

검색결과 239건 처리시간 0.028초

Involvement of EBV-encoded BART-miRNAs and Dysregulated Cellular miRNAs in Nasopharyngeal Carcinoma Genesis

  • Xie, Yuan-Jie;Long, Zhi-Feng;He, Xiu-Sheng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권10호
    • /
    • pp.5637-5644
    • /
    • 2013
  • The definite molecular mechanisms underlying the genesis of nasopharyngeal carcinomas (NPCs) remain to be completely elucidated. miRNAs are small non-coding RNAs which are implicated in cell proliferation, apoptosis, and even carcinogenesis through negatively regulating gene expression post-transcriptionally. EBV was the first human virus found to express miRNAs. EBV-encoded BART-miRNAs and dysregulated cellular miRNAs are involved in carcinogenesis of NPC by interfering in the expression of viral and host cell genes related to immune responses and perturbing signal pathways of proliferation, apoptosis, invasion, metastasis and even radio-chemo-therapy sensitivity. Additional studies on the roles of EBV-encoded miRNAs and cellular miRNAs will provide new insights concerning the complicated gene regulated network and shed light on novel strategies for the diagnosis, therapy and prognosis of NPC.

네트워크 기반 면역관련 유전자의 DNA 메탈화 모티프 분석 (Analysis of DNA Methylation Motif for Immune Related Genes Based on Networks)

  • 이지후;류제운;김학용
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2012년도 춘계 종합학술대회 논문집
    • /
    • pp.357-358
    • /
    • 2012
  • 후성유전은 DNA 염기서열이 변화하지 않은 상태에서 특별한 후성적 조절 기전에 의해 유전자의 발현 양상이 변하는 현상이다. 후성적 조절 기전에는 DNA의 메틸화(methyaltion)와 히스톤 단백질의 변형(modification), non coding RNA에 의한 조절 등이 포함되는데, 이 중 DNA 메틸화 정도에 대한 패턴 분석은 후성유전을 이해하는 중요한 접근방법 중 하나이다. 네트워크와 DNA 메틸화 분석을 위하여 면역관련 264개 유전자들의 -2000bp ~ +200bp사이에 있는 DNA 염기 서열 정보를 추출하였다. 또한 면역관련 단백질들의 상호작용 정보를 이용하여 네트워크를 구축하고 여기에 메틸화 정보를 적용하여 상호작용과 메틸화 모티프와의 관계를 분석하였다. 메틸화 모티프 정보를 적용한 단백질 네트워크에서는 기존 단백질 네트워크보다 더 복잡한 구조를 이루고 있었다. 이러한 구조는 동일한 메틸화 모티프들이 여러 유전자들의 활성을 조절할 것으로 사료된다. 단백질 상호작용 네트워크에 모티프를 적용한 분석은 새로운 후성유전학적 연구를 위한 접근 방법으로 이용될 수 있을 것이다.

  • PDF

Effects of Cryopreservation and Thawing on Single-Cell Transcriptomes of Human T Cells

  • Jeong Seok Lee;Kijong Yi;Young Seok Ju;Eui-Cheol Shin
    • IMMUNE NETWORK
    • /
    • 제20권4호
    • /
    • pp.34.1-34.8
    • /
    • 2020
  • Cryopreservation and thawing of PBMCs are inevitable processes in expanding the scale of experiments in human immunology. Here, we carried out a fundamental study to investigate the detailed effects of PBMC cryopreservation and thawing on transcriptomes. We sorted Tregs from fresh and cryopreserved/thawed PBMCs from an identical donor and performed single-cell RNA-sequencing (scRNA-seq). We found that the cryopreservation and thawing process minimally affects the key molecular features of Tregs, including FOXP3. However, the cryopreserved and thawed sample had a specific cluster with up-regulation of genes for heat shock proteins. Caution may be warranted in interpreting the character of any cluster of cells with heat shock-related properties when cryopreserved and thawed samples are used for scRNA-seq.

Partial Least Squares Based Gene Expression Analysis in EBV-Positive and EBV-Negative Posttransplant Lymphoproliferative Disorders

  • Wu, Sa;Zhang, Xin;Li, Zhi-Ming;Shi, Yan-Xia;Huang, Jia-Jia;Xia, Yi;Yang, Hang;Jiang, Wen-Qi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권11호
    • /
    • pp.6347-6350
    • /
    • 2013
  • Post-transplant lymphoproliferative disorder (PTLD) is a common complication of therapeutic immunosuppression after organ transplantation. Gene expression profile facilitates the identification of biological difference between Epstein-Barr virus (EBV) positive and negative PTLDs. Previous studies mainly implemented variance/regression analysis without considering unaccounted array specific factors. The aim of this study is to investigate the gene expression difference between EBV positive and negative PTLDs through partial least squares (PLS) based analysis. With a microarray data set from the Gene Expression Omnibus database, we performed PLS based analysis. We acquired 1188 differentially expressed genes. Pathway and Gene Ontology enrichment analysis identified significantly over-representation of dysregulated genes in immune response and cancer related biological processes. Network analysis identified three hub genes with degrees higher than 15, including CREBBP, ATXN1, and PML. Proteins encoded by CREBBP and PML have been reported to be interact with EBV before. Our findings shed light on expression distinction of EBV positive and negative PTLDs with the hope to offer theoretical support for future therapeutic study.

Acceleration of Mesenchymal-to-Epithelial Transition (MET) during Direct Reprogramming Using Natural Compounds

  • Seo, Ji-Hye;Jang, Si Won;Jeon, Young-Joo;Eun, So Young;Hong, Yean Ju;Do, Jeong Tae;Chae, Jung-il;Choi, Hyun Woo
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권10호
    • /
    • pp.1245-1252
    • /
    • 2022
  • Induced pluripotent stem cells (iPSCs) can be generated from somatic cells using Oct4, Sox2, Klf4, and c-Myc (OSKM). Small molecules can enhance reprogramming. Licochalcone D (LCD), a flavonoid compound present mainly in the roots of Glycyrrhiza inflata, acts on known signaling pathways involved in transcriptional activity and signal transduction, including the PGC1-α and MAPK families. In this study, we demonstrated that LCD improved reprogramming efficiency. LCD-treated iPSCs (LCD-iPSCs) expressed pluripotency-related genes Oct4, Sox2, Nanog, and Prdm14. Moreover, LCD-iPSCs differentiated into all three germ layers in vitro and formed chimeras. The mesenchymal-to-epithelial transition (MET) is critical for somatic cell reprogramming. We found that the expression levels of mesenchymal genes (Snail2 and Twist) decreased and those of epithelial genes (DSP, Cldn3, Crb3, and Ocln) dramatically increased in OR-MEF (OG2+/+/ROSA26+/+) cells treated with LCD for 3 days, indicating that MET effectively occurred in LCD-treated OR-MEF cells. Thus, LCD enhanced the generation of iPSCs from somatic cells by promoting MET at the early stages of reprogramming.

Potential involvement of Drosophila flightless-1 in carbohydrate metabolism

  • Park, Jung-Eun;Jang, Jinho;Lee, Eun Ji;Kim, Su Jung;Yoo, Hyun Ju;Lee, Semin;Kang, Min-Ji
    • BMB Reports
    • /
    • 제51권9호
    • /
    • pp.462-467
    • /
    • 2018
  • A previous study of ours indicated that Drosophila flightless-1 controls lipid metabolism, and that there is an accumulation of triglycerides in flightless-1 (fliI)-mutant flies, where this mutation triggers metabolic stress and an obesity phenotype. Here, with the aim of characterizing the function of FliI in metabolism, we analyzed the levels of gene expression and metabolites in fliI-mutant flies. The levels of enzymes related to glycolysis, lipogenesis, and the pentose phosphate pathway increased in fliI mutants; this result is consistent with the levels of metabolites corresponding to a metabolic pathway. Moreover, high-throughput RNA sequencing revealed that Drosophila FliI regulates the expression of genes related to biological processes such as chromosome organization, carbohydrate metabolism, and immune reactions. These results showed that Drosophila FliI regulates the expression of metabolic genes, and that dysregulation of the transcription controlled by FliI gives rise to metabolic stress and problems in the development and physiology of Drosophila.

Genomewide Expression Profile of Forsythia Suspensa on Lipopolysaccaride-induced Activation in Microglial Cells

  • Sohn, Sung-Hwa;Ko, Eun-Jung;Kim, Yang-Seok;Shin, Min-Kyu;Hong, Moo-Chang;Bae, Hyun-Su
    • Molecular & Cellular Toxicology
    • /
    • 제4권2호
    • /
    • pp.113-123
    • /
    • 2008
  • Microglia, which is the primary immune effector cells in the central nervous system, constitutes the first line of defense against infection and injury in the brain. The goal of this study was to determine the protective (anti-inflammation) mechanisms of forsythia suspense (FS) on LPS-induced activation of BV-2 microglial cells. The effects of FS on gene expression profiles in activated BV-2 microglial cells were evaluated using microarray analysis. BV-2 microglial cells were cultured in a 100mm dish $(1{\times}10^7/dish)$ for 24hr and then pretreated with $1{\mu}g/mL$ FS or left untreated for 30 min. Next, $1{\mu}g/mL$ LPS was added to the samples and the cells were reincubated at $37^{\circ}C$ for 30 min, 1hr, and 3hr. The gene expression profiles of the BV-2 microglial cells varied depending on the FS. The oligonucleotide microarray analysis revealed that MAPK pathway-related genes such as Mitogen activated protein kinase 1 (Mapk1), RAS protein activator like 2 (Rasal2), and G-protein coupled receptor 12 (Gpr12) and nitric oxide biosynthesis-related genes such as nitric oxide synthase 1 (neuronal) adaptor protein (Nos1ap), and dimethylarginine dimethylaminohydrolase 1 (Ddah1) were down regulated in FS-treated BV-2 microglial cells. FS can affect the MAPK pathway and nitric oxide biosynthesis in BV-2 microglial cells.

Silk Protein as a Fetal Bovine Serum Substitute for Animal Cell Culture

  • Jo, You-Young;Kweon, HaeYong;Ji, Sang Deok;Kim, Jong Gil;Kim, Kee Young
    • 한국미생물·생명공학회지
    • /
    • 제47권4호
    • /
    • pp.487-497
    • /
    • 2019
  • Fetal Bovine Serum (FBS) is an essential substance added to animal cell culture medium. However, its composition is unclear causing problems such as development of an immune response when cultured cells are transplanted into the human body. In this study, silk sericin, silk fibroin, and hemolymph obtained from silkworms were added to the cell culture medium in order to determine if it can replace FBS. After establishment of the cell culture, cell proliferation and expression levels of cell growth-related genes were compared with those of control cells (cells cultured in the medium with 10% FBS). Results showed that the test group treated with silk fibroin extracted from a Korean silkworm variety, Kumokjam could replace 10% FBS. In addition, expression levels of cell growth related genes such as Fibronectin and TGF-β1 increased significantly in cells cultured using silk fibroin, depending on the concentration used in cell adhesion and cell proliferation [24]. To date, no studies have been conducted to find a replacement for FBS. Thus, this study was carried out to develop a substitute for FBS by using silkworm-derived alternatives such as silkworm hemolymph, silk sericin, and silk fibroin, which are cheap and have various physiological effects, cell promoting effects, and can be mass produced.

Anti-proliferation Effects of Interferon-gamma on Gastric Cancer Cells

  • Zhao, Ying-Hui;Wang, Tao;Yu, Guang-Fu;Zhuang, Dong-Ming;Zhang, Zhong;Zhang, Hong-Xin;Zhao, Da-Peng;Yu, Ai-Lian
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권9호
    • /
    • pp.5513-5518
    • /
    • 2013
  • IFN-${\gamma}$ plays an indirect anti-cancer role through the immune system but may have direct negative effects on cancer cells. It regulates the viability of gastric cancer cells, so we examined whether it affects their proliferation and how that might be brought about. We exposed AGS, HGC-27 and GES-1 gastric cancer cell lines to IFN-${\gamma}$ and found significantly reduced colony formation ability. Flow cytometry revealed no effect of IFN-${\gamma}$ on apoptosis of cell lines and no effect on cell aging as assessed by ${\beta}$-gal staining. Microarray assay revealed that IFN-${\gamma}$ changed the mRNA expression of genes related to the cell cycle and cell proliferation and migration, as well as chemokines and chemokine receptors, and immunity-related genes. Finally, flow cytometry revealed that IFN-${\gamma}$ arrested the cells in the G1/S phase. IFN-${\gamma}$ may slow proliferation of some gastric cancer cells by affecting the cell cycle to play a negative role in the development of gastric cancer.

Functional Analysis of B7-H3 in Colonic Carcinoma Cells

  • Lu, Peng;Liu, Rong;Ma, Er-Min;Yang, Tie-Jian;Liu, Jia-Lin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권8호
    • /
    • pp.3899-3903
    • /
    • 2012
  • B7-H3 is a newly discovered member of the B7/CD28 superfamily which functions as an important T-cell immune molecule. It has been reported recently that B7-H3 is highly expressed in many cancer cells, the data indicating that it may be a regulation factor contributing to tumor-resistance. In our study, we used bioinformatics to identify differentially expressed genes between colonic cancer cells and normal colonic cells, aiming to analyze mechanisms and identify sub-pathways closely related to progression, with the final aim of finding small molecule drugs which might interfere this progression. We found that ajmaline is one related factor which may enhance self-immunity in colon carcinoma therapy and B7-H3 plays important roles with regard to immunoreactions of colonic cancer cells. All the results indicate that H7-B3 is a favorable prognostic biomarker for colon carcinomas, providing novel information regarding likely targets for intervention.