DOI QR코드

DOI QR Code

Silk Protein as a Fetal Bovine Serum Substitute for Animal Cell Culture

  • Jo, You-Young (Sericultural and Apicultural Materials Division, National Institute of Agricultural Science, RDA) ;
  • Kweon, HaeYong (Sericultural and Apicultural Materials Division, National Institute of Agricultural Science, RDA) ;
  • Ji, Sang Deok (Sericultural and Apicultural Materials Division, National Institute of Agricultural Science, RDA) ;
  • Kim, Jong Gil (Sericultural and Apicultural Materials Division, National Institute of Agricultural Science, RDA) ;
  • Kim, Kee Young (Sericultural and Apicultural Materials Division, National Institute of Agricultural Science, RDA)
  • Received : 2019.01.30
  • Accepted : 2019.03.21
  • Published : 2019.12.28

Abstract

Fetal Bovine Serum (FBS) is an essential substance added to animal cell culture medium. However, its composition is unclear causing problems such as development of an immune response when cultured cells are transplanted into the human body. In this study, silk sericin, silk fibroin, and hemolymph obtained from silkworms were added to the cell culture medium in order to determine if it can replace FBS. After establishment of the cell culture, cell proliferation and expression levels of cell growth-related genes were compared with those of control cells (cells cultured in the medium with 10% FBS). Results showed that the test group treated with silk fibroin extracted from a Korean silkworm variety, Kumokjam could replace 10% FBS. In addition, expression levels of cell growth related genes such as Fibronectin and TGF-β1 increased significantly in cells cultured using silk fibroin, depending on the concentration used in cell adhesion and cell proliferation [24]. To date, no studies have been conducted to find a replacement for FBS. Thus, this study was carried out to develop a substitute for FBS by using silkworm-derived alternatives such as silkworm hemolymph, silk sericin, and silk fibroin, which are cheap and have various physiological effects, cell promoting effects, and can be mass produced.

Keywords

References

  1. Spees JL, Gregory CA, Singh H, Tucker HA, Peister A, Lynch PJ, et al. 2004. Internalized antigens must be removed to prepare hypoimmunogenic mesenchymal stem cells for cell and gene therapy. Mol. Ther. 9: 747-756. https://doi.org/10.1016/j.ymthe.2004.02.012
  2. Van der Valk J, Bieback K, Buta C, Cochrane B, Dirks WG, Fu J, et al. 2018. Fetal Bovine Serum (FBS): past-present-future. ALTEX 35: 99-118.
  3. Van der Valk J, Brunner D, De Smet K, Fex SA, Honegger P, Knudsen LE, et al. 2010. Optimization of chemically defined cell culture media - Replacing fetal bovine serum in mammalian in vitro methods. Toxicol. In Vitro 24: 1053-1063. https://doi.org/10.1016/j.tiv.2010.03.016
  4. Hassan G, Kasem I, Soukkarieh C, Aljamali M. 2017. A simple method to isolate and expand human umbilical cord derived mesenchymal stem cells: Using explant method and umbilical cord blood serum. Int. J. Stem Cells 10: 184-192. https://doi.org/10.15283/ijsc17028
  5. Blazquez-Prunera A, Diez JM, Gajardo R, Grancha S. 2017. Human mesenchymal stem cells maintain their phenotype, multipotentiality, and genetic stability when cultured using a defined xenofree human plasma fraction. Stem Cell Res. Ther. 8: 103-113. https://doi.org/10.1186/s13287-017-0552-z
  6. Lykov AP, Bondarenko NA, Surovtseva MA, Kim II, Poveshchenko OV, Pokushalov EA, et al. 2017. Comparative effects of plateletrich plasma, platelet lysate, and fetal calf serum on mesenchymal stem cells. Bull. Exp. Biol. Med. 163: 757-760. https://doi.org/10.1007/s10517-017-3897-5
  7. Kocaoemer A, Kern S, Klüter H, Bieback K. 2007. Human AB serum and thrombin-activated platelet-rich plasma are suitable alternatives to fetal calf serum for the expansion of mesenchymal stem cells from adipose tissue. Stem Cells 25: 1270-1278. https://doi.org/10.1634/stemcells.2006-0627
  8. Castells-Sala C, Martorell J, Balcells MC. 2017. A human plasma derived supplement preserves function of human vascular cells in absence of fetal bovine serum. Cell Biosci. 7: 41-48. https://doi.org/10.1186/s13578-017-0164-4
  9. Kandoi S, Praveen KL, Patra B, Vidyasekar P, Sivanesan D, Vijayalakshmi S, et al. 2018. Evaluation of platelet lysate as a substitute for FBS in explant and enzymatic isolation methods of human umbilical cord MSCs. Sci. Rep. 9: 12439-12450.
  10. Mun JY, Lee HS, Lee KG, Kweon HY, Jo YY, Yeo JH. 2013. Effects of matured silkworm hemolymph on suppressing melanin synthesis. J. Seric. Entomol. Sci. 51: 207-210. https://doi.org/10.7852/jses.2013.51.2.207
  11. Choi SS, Rhee WJ, Park TH. 2002. Inhibition of human cell apoptosis by silkworm hemolymph. Biotechnol. Prog. 18: 874-878. https://doi.org/10.1021/bp020001q
  12. Kim EJ, Park HJ, Park TH. 2003. Inhibition of apoptosis by recombinant 30K protein originating from silkworm hemolymph. Biochem. Biophys. Res. Commun. 308: 523-528. https://doi.org/10.1016/S0006-291X(03)01425-6
  13. Ha SH, Park TH, Kim SE. 1996. Silkworm hemolymph as a substitute for fetal bovine serum in insect cell culture. Biotechnol. Tech. 10: 401-406. https://doi.org/10.1007/BF00174223
  14. Rhee WJ, Park JH, Hahn JS, Park TH. 2013. Anti-apoptotic mechanism of silkworm hemolymph in HeLa cell apoptosis. Process Biochem. 48: 1375-1380. https://doi.org/10.1016/j.procbio.2013.06.018
  15. Putthanarat S, Eby RK, Adams WW, Liu GF. 1996. Aspects of the morphology of the silk of Bombyx mori. J. Macromol. Sci. Part A. 33: 899-911. https://doi.org/10.1080/10601329608014640
  16. Nayak S, Talukdar S, Kundu SC. 2012. Potential of 2D crosslinked sericin membranes with improved biostability for skin tissue engineering. Cell Tissue Res. 347: 783-794. https://doi.org/10.1007/s00441-011-1269-4
  17. Aramwit P, Sangcakul A. 2007. The effects of sericin cream on wound healing in rats. Biosci. Biotechnol. Biochem. 71: 2473-2477. https://doi.org/10.1271/bbb.70243
  18. Terada S, Sasaki M, Yanagihara K, Yamada H. 2005. Preparation of silk protein sericin as mitogenic factor for better mammalian cell culture. J. Biosci. Bioeng. 100: 667-671. https://doi.org/10.1263/jbb.100.667
  19. Morikawa M, Kimura T, Murakami M, Katayama K, Terada S, Yamaguchi A. 2009. Rat islet culture in serum-free medium containing silk protein sericin. J. Hepatobiliary Pancreat. Surg. 16: 223-228. https://doi.org/10.1007/s00534-009-0049-y
  20. Isobe T, Ikebata Y, Onitsuka T, Wittayarat M, Sato Y, Taniguchi M, et al. 2012. Effect of sericin on preimplantation development of bovine embryos cultured individually. Theriogenology 78: 747-752. https://doi.org/10.1016/j.theriogenology.2012.03.021
  21. Ohnishi K, Murakami M, Morikawa M, Yamaguchi A. 2012. Effect of the silk protein sericin on cryopreserved rat islets. J. Hepatobiliary Pancreat. Sci. 19: 354-360. https://doi.org/10.1007/s00534-011-0415-4
  22. Panossian A, Ashiku S, Kirchhoff CH, Randolph MA, Yaremchuk MJ. 2001. Effects of cell concentration and growth period on articular and ear chondrocyte transplants for tissue engineering. Plast. Reconstr. Surg. 108: 392-402. https://doi.org/10.1097/00006534-200108000-00018
  23. Stoddart MJ, Grad S, Eglin D, Alini M. 2009. Cells and biomaterials in cartilage tissue engineering. Regen. Med. 4: 81-98. https://doi.org/10.2217/17460751.4.1.81
  24. Sumida M, Sutthikhum V. 2015. Fibroin and sericin-derived bioactive peptides and hydrolysates as alternative sources of food additive for promotion of human health: A review. Res. Knowl. 1: 1-17.
  25. Pakkianathan BC, Singh NK, König S, Krishnan M. 2015. Antiapoptotic activity of 30 kDa lipoproteins family from fat body tissue of silkworm, Bombyx mori. Insect Sci. 22: 629-638. https://doi.org/10.1111/1744-7917.12119
  26. Choi SS, Rhee WJ, Park TH. 2005. Beneficial effect of silkworm hemolymph on a CHO cell system: Inhibition of apoptosis and increase of EPO production. Biotechnol. Bioeng. 91: 793-800. https://doi.org/10.1002/bit.20550
  27. Cha HM, Kim SM, Choi YS, Park JS, Lim JH, Hwang SG, et al. 2015. Serum-free media supplement from silkworm gland for the expansion of mesenchymal stem cells. Tissue Eng. Regen. Med. 12: 53-59.
  28. Kundu SC, Dash BC, Dash R, Kaplan DL. 2008. Natural protective glue protein, sericin bioengineered by silkworms: potential for biomedical and biotechnological applications. Prog. Polym. Sci. 33: 998-1012. https://doi.org/10.1016/j.progpolymsci.2008.08.002
  29. Mondal M, Trivedy K, Kumar SN. 2007. The silk proteins, sericin and fibroin in silkworm, Bombyx mori Linn., - A review. Caspian J. Env. Sci. 5: 63-76.
  30. Isobe T, Ikebata Y, Onitsuka T, Do LT, Sato Y, Taniguchi M, et al. 2013. Cryopreservation for bovine embryos in serum-free freezing medium containing silk protein sericin. Cryobiology 67: 184-187. https://doi.org/10.1016/j.cryobiol.2013.06.010
  31. Qi Y, Wang H, Wei K, Yang Y, Zheng RY, Kim IS, et al. 2017. A review of structure construction of silk fibroin biomaterials from single structures to multi-level structures. Int. J. Mol. Sci. 18: 237-257. https://doi.org/10.3390/ijms18030237
  32. Melke J, Midha S, Ghosh S, Ito K, Hofmann S. 2016. Silk fibroin as biomaterial for bone tissue engineering. Acta. Biomater. 31: 1-16. https://doi.org/10.1016/j.actbio.2015.09.005
  33. Chung DE, Kim SK, Jo YY, Kweon HY, Lee KG, Kim HB. 2015. Cell proliferation of silk proteins obtained from Bombyx mori silkworm varieties. J. Seric. Entomol. Sci. 53: 92-96. https://doi.org/10.7852/jses.2015.53.2.92
  34. Ohnishi K, Murakami M, Morikawa M, Yamaguchi A. 2012. Effect of the silk protein sericin on cryopreserved rat islets. J. Hepatobiliary Pancreat. Sci. 19: 354-360. https://doi.org/10.1007/s00534-011-0415-4
  35. Terada S, Nishimura T, Sasaki M, Yamada H, Miki M. 2002. Sericin, a protein derived from silkworms, accelerates the proliferation of several mammalian cell lines including a hybridoma. Cytotechnology 40: 3-12. https://doi.org/10.1023/A:1023993400608
  36. Cao TT, Zhang YQ. 2015. Viability and proliferation of L929, tumour and hybridoma cells in the culture media containing sericin protein as a supplement or serum substitute. Appl. Microbiol. Biotechnol. 99: 7219-7228. https://doi.org/10.1007/s00253-015-6576-3
  37. Sehnal F. 2008. Prospects of the practical use of silk sericins. Entomol. Res. 38: S1-S8. https://doi.org/10.1111/j.1748-5967.2008.00168.x
  38. Park YR, Sultan MT, Park HJ, Lee JM, Ju HW, Lee OJ, et al. 2018. NF-${\kappa}$B signaling is key in the wound healing processes of silk fibroin. Acta. Biomater. 67: 183-195. https://doi.org/10.1016/j.actbio.2017.12.006
  39. Pornanong A. 2012. Flavonoids and carotenoids in silkworm cocoons, pp. 87-97. In Pornanong A (ed.), Silk: Properties, Production and Uses, Nova Science Publishers.
  40. Riley KN, Herman IM. 2005. Collagenase promotes the cellular responses to injury and wound healing in vivo. J. Burns Wounds 4: e8.
  41. Pankov R, Yamada KM. 2002. Fibronectin at a glance. J. Cell Sci. 115: 3861-3863. https://doi.org/10.1242/jcs.00059
  42. McCartney-Francis N, Mizel D, Wong H, Wahl L, Wahl S. 1990. TGF-${\beta}$ regulates production of growth factor and TGF-${\beta}$ by human peripheral blood monocytes. Growth Factors 4: 27-35. https://doi.org/10.3109/08977199009011007
  43. Yamada Y. 2000. Association of a Leu$^{10}{\rightarrow}$Pro polymorphism of the transforming growth factor-${\beta}$1 with genetic susceptibility to osteoporosis and spinal osteoarthritis. Mech. Ageing Dev. 1160: 113-123. https://doi.org/10.1016/S0047-6374(00)00131-7

Cited by

  1. Immune Response to Silk Sericin–Fibroin Composites: Potential Immunogenic Elements and Alternatives for Immunomodulation vol.22, pp.1, 2022, https://doi.org/10.1002/mabi.202100292