• Title/Summary/Keyword: immune-related gene

Search Result 243, Processing Time 0.024 seconds

Characterization of immune gene expression in rock bream (Oplegnathus fasciatus) kidney infected with rock bream iridovirus (RBIV) using microarray

  • Myung-Hwa Jung;Sung-Ju Jung
    • Journal of fish pathology
    • /
    • v.36 no.2
    • /
    • pp.191-211
    • /
    • 2023
  • Rock bream iridovirus (RBIV) causes high mortality and economic losses in rock bream (Oplegnathus fasciatus) aquaculture industry in Korea. Although, the immune responses of rock bream under RBIV infection have been studied, there is not much information at the different stages of infection (initial, middle and recovery). Gene expression profiling of rock bream under different RBIV infection stages was investigated using a microarray approaches. In total, 5699 and 6557 genes were significantly up- or down-regulated over 2-fold, respectively, upon RBIV infection. These genes were grouped into categories such as innate immune responses, adaptive immune responses, complements, lectin, antibacterial molecule, stress responses, DNA/RNA binding, energy metabolism, transport and cell cycle. Interestingly, hemoglobins (α and β) appears to be important during pathogenesis; it is highly up-regulated at the initial stage and is gradually decreased when the pathogen most likely multiplying and fish begin to die at the middle or later stage. Expression levels were re-elevated at the recovery stage of infection. Among up-regulated genes, interferon-related genes were found to be responsive in most stages of RBIV infection. Moreover, X-linked inhibitor of apoptosis (XIAP)-associated factor 1 (XAF1) expression was high, whereas expression of apoptosis-relate genes were low. In addition, stress responses were highly induced in the virus infection. The cDNA microarray data were validated using quantative real-time PCR. Our results provide novel inslights into the broad immune responses triggered by RBIV at different infection stages.

The Expression of Immunomodulation-Related Cytokines and Genes of Adipose- and Bone Marrow-Derived Human Mesenchymal Stromal Cells from Early to Late Passages

  • Mun, Chin Hee;Kang, Mi-Il;Shin, Yong Dae;Kim, Yeseul;Park, Yong-Beom
    • Tissue Engineering and Regenerative Medicine
    • /
    • v.15 no.6
    • /
    • pp.771-779
    • /
    • 2018
  • BACKGROUND: Mesenchymal stromal cells (MSCs) are multipotent stem cells that can differentiate into several cell types. In addition, many studies have shown that MSCs modulate the immune response. However, little information is currently available regarding the maintenance of immunomodulatory characteristics of MSCs through passages. Therefore, we investigated and compared cytokine and gene expression levels from adipose (AD) and bone marrow (BM)-derived MSCs relevant to immune modulation from early to late passages. METHODS: MSC immunophenotype, growth characteristics, cytokine expressions, and gene expressions were analyzed. RESULTS: AD-MSCs and BM-MSCs had similar cell morphologies and surface marker expressions from passage 4 to passage 10. Cytokines secreted by AD-MSCs and BM-MSCs were similar from early to late passages. AD-MSCs and BM-MSCs showed similar immunomodulatory properties in terms of cytokine secretion levels. However, the gene expressions of tumor necrosis factor-stimulated gene (TSG)-6 and human leukocyte antigen (HLA)-G were decreased and gene expressions of galectin-1 and -3 were increased in both AD- and BM-MSCs with repeated passages. CONCLUSION: Our study showed that the immunophenotype and expression of immunomodulation-related cytokines of AD-MSCs and BM-MSCs immunomodulation through the passages were not significantly different, even though the gene expressions of both MSCs were different.

Deoxynivalenol- and zearalenone-contaminated feeds alter gene expression profiles in the livers of piglets

  • Reddy, Kondreddy Eswar;Jeong, Jin young;Lee, Yookyung;Lee, Hyun-Jeong;Kim, Min Seok;Kim, Dong-Wook;Jung, Hyun Jung;Choe, Changyong;Oh, Young Kyoon;Lee, Sung Dae
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.4
    • /
    • pp.595-606
    • /
    • 2018
  • Objective: The Fusarium mycotoxins of deoxynivalenol (DON) and zerolenone (ZEN) cause health hazards for both humans and farm animals. Therefore, the main intention of this study was to reveal DON and ZEN effects on the mRNA expression of pro-inflammatory cytokines and other immune related genes in the liver of piglets. Methods: In the present study, 15 six-week-old piglets were randomly assigned to the following three different dietary treatments for 4 weeks: control diet, diet containing 8 mg DON/kg feed, and diet containing 0.8 mg ZEN/kg feed. After 4 weeks, liver samples were collected and sequenced using RNA-Seq to investigate the effects of the mycotoxins on genes and gene networks associated with the immune systems of the piglets. Results: Our analysis identified a total of 249 differentially expressed genes (DEGs), which included 99 upregulated and 150 downregulated genes in both the DON and ZEN dietary treatment groups. After biological pathway analysis, the DEGs were determined to be significantly enriched in gene ontology terms associated with many biological pathways, including immune response and cellular and metabolic processes. Consistent with inflammatory stimulation due to the mycotoxin-contaminated diet, the following Kyoto encyclopedia of genes and genomes pathways, which were related to disease and immune responses, were found to be enriched in the DEGs: allograft rejection pathway, cell adhesion molecules, graft-versus-host disease, autoimmune thyroid disease (AITD), type I diabetes mellitus, human T-cell leukemia lymphoma virus infection, and viral carcinogenesis. Genome-wide expression analysis revealed that DON and ZEN treatments downregulated the expression of the majority of the DEGs that were associated with inflammatory cytokines (interleukin 10 receptor, beta, chemokine [C-X-C motif] ligand 9), proliferation (insulin-like growth factor 1, major facilitator superfamily domain containing 2A, insulin-like growth factor binding protein 2, lipase G, and salt inducible kinase 1), and other immune response networks (paired immunoglobulin-like type 2 receptor beta, Src-like-adaptor-1 [SLA1], SLA3, SLA5, SLA7, claudin 4, nicotinamide N-methyltransferase, thyrotropin-releasing hormone degrading enzyme, ubiquitin D, histone $H_2B$ type 1, and serum amyloid A). Conclusion: In summary, our results demonstrated that high concentrations DON and ZEN disrupt immune-related processes in the liver.

Changes in Human Gene Expression After Sleep Deprivation

  • Sun, Je Young;Kim, Jong Woo;Yim, Sung-Vin;Oh, Miae;Kang, Won Sub
    • Korean Journal of Biological Psychiatry
    • /
    • v.29 no.1
    • /
    • pp.9-14
    • /
    • 2022
  • Objectives Sleep is fundamental to maintaining homeostatic control and has behavioral and psychological effects on humans. To better understand the function and pathophysiology of sleep, specific gene expressions in reference to sleep deprivation have been studied. In this study, we investigated the gene expression of peripheral blood mononuclear cells after sleep deprivation to better understand the functional consequence of sleep. Methods In eight healthy men, 24 h sleep deprivation was induced. Blood was sampled at 14:00, before and after sleep deprivation. mRNA was isolated and analyzed via microarrays. cDNAs before and after sleep deprivation were coupled to Cy3 or Cy5, respectively, and normalized cDNAs were selected with a ratio greater than two as a significant gene. Results are expressed as mean. Results Among 41174 transcripts, 38852 genes were selected as reliable, and only a small minority (< 1%) of the genes were up-or down-regulated. Total six and eleven genes were selected as significant upregulated and downregulated genes, respectively. Protein tyrosine phosphatase receptor type O was most upregulated (6.9-fold), and low-density lipoprotein receptor-related protein 5-like protein showed the most substantial inhibition (0.06-fold). Conclusions This study showed significant associations between sleep deprivation and the immune system. Acute sleep deprivation affects pathways in proinflammatory cytokines as well as metabolic pathways of glutamate and purine, neurotransmitters related to sleep and wake cycle.

Effects of dietary by-products discarded after probiotics production (BPPP) on growth performance, innate immunity, immune gene expression, and disease resistance against Edwardsiella tarda in carp, Cyprinus carpio (유산균 생산 후 폐기되는 부산물 첨가 사료의 급이가 잉어(Cyprinus carpio)의 성장률, 선천성 면역, 면역연관 유전자 발현 및 항균효과에 미치는 영향)

  • Choi, Jae Hyeok;Jung, Sang Mok;Yang, Eun Chong;Jang, Tae Won;Lee, Chan Heun;Park, Kwan Ha;Choi, Sanghoon
    • Journal of fish pathology
    • /
    • v.35 no.1
    • /
    • pp.103-111
    • /
    • 2022
  • This study has been performed to investigate the potential effects of by-product discarded after probiotics production (BPPP) on growth performance, immune gene expression, innate-immunity status, and disease resistance of carp, Cyprinus carpio. For 3 weeks, carp were fed four diets containing different levels of BPPP at 0, 0.1, 0.2 and 0.5% per kg of normal diet. Every 7 days of feeding, immune-related gene expression, serum lysozyme activity and ACH50 were analyzed. Growth rates and challenge test with E. tarda were conducted after 3 weeks of BPPP feeding. Both lysozyme activity and ACH50 were significantly (p<0.05) increased in all BPPP supplemented groups compared to the control at every 7 day for 3 weeks of feeding trial. The gene expression of pro-inflammatory cytokines, IL-1β and TNF-α was significantly (p<0.05) up-regulated until 21 days of feeding in all groups except for 0.2% group on day 7 post feeding. The anti-inflammatory cytokine IL-10 gene expression was only significantly (p<0.05) increased in 0.1% group on day 7 and decreased (p<0.05) on day 14 in all BPPP supplemented groups. On day 21, the IL-10 gene expression was augmented (p<0.05) in all groups. SOD gene expression was significantly (p<0.05) increased compared to the control on day 14 and 21 post feeding, whereas no significant difference was observed on day 7. In challenging test, 0.2%, 0.1%, 0.5% and control group showed 80%, 70%, 60% and 40% of survival rate, respectively. Feed conversion rate was only improved in 0.5% group. In conclusion, the present study indicates that dietary BPPP suplementation improved growth performance, innate immune response and bactericidal activity in carp.

Differential gene expression by chrysotile in human bronchial epithelial cells

  • Seo, Yoo-Na;Lee, Yong-Jin;Lee, Mi-Young
    • Animal cells and systems
    • /
    • v.16 no.2
    • /
    • pp.95-103
    • /
    • 2012
  • Asbestos exposure has been known to contribute to several lung diseases named asbestosis, malignant mesothelioma and lung cancer, but the disease-related molecular and cellular mechanisms are still largely unknown. To examine the effects of asbestos exposure in human bronchial epithelial cells at gene level, the global gene expression profile was analyzed following chrysotile treatment. The microarray results revealed differential gene expression in response to chrysotile treatment. The genes up- and down-regulated by chrysotile were mainly involved in processes including metabolism, signal transduction, transport, development, transcription, immune response, and other functions. The differential gene expression profiles could provide clues that might be used to understand the pathological mechanisms and therapeutic targets involved in chrysotile-related diseases.

Differential Level of Host Gene Expression Associated with Nucleopolyhedrovirus Infection in Silkworm Races of Bombyx mori

  • Lekha, Govindaraj;Vijayagowri, Esvaran;Sirigineedi, Sasibhushan;Sivaprasad, Vankadara;Ponnuvel, Kangayam M.
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.29 no.2
    • /
    • pp.145-152
    • /
    • 2014
  • The variation in the level of immune response related gene expression in silkworm, Bombyx mori following infection with Bombyx mori nucleopolyhedrovirus (BmNPV) was analyzed at different time intervals. The occlusion bodies of BmNPV orally inoculated to the two most divergent silkworm races viz., Sarupat (resistant to BmNPV infection) and CSR2 (susceptible to BmNPV infection) were subjected to oral BmNPV inoculation. The expression profile of gp 41 gene of BmNPV in the Sarupat and CSR2 races revealed that the virus could invade the midguts of both susceptible and resistant races. However, its multiplication was significantly less in the midgut of resistant race, while, in the susceptible race, the viral multiplication reached maximum level within 12 h. These findings indicate that potential host genes are involved in the inhibition of viral multiplication within larval midgut. The immune response genes arylphorin, cathepsin B, gloverin, lebocin, serpin, Hsp 19.9, Hsp 20.1, Hsp 20.4, Hsp 20.8, Hsp 21.4, Hsp 23.7, Hsp 40, Hsp 70, Hsp90 revealed differential level of expression on NPV infection. The gloverin, serpin, Hsp 23.7 and Hsp 40 genes are significantly up-regulated in the resistant race after NPV infection. The early up-regulation of these genes suggests that these genes could play an important role in baculovirus resistance in the silkworm, B. mori.

Exosomes in Action: Unraveling Their Role in Autoimmune Diseases and Exploring Potential Therapeutic Applications

  • Shuanglong Zhou;Jialing Huang;Yi Zhang;Hongsong Yu;Xin Wang
    • IMMUNE NETWORK
    • /
    • v.24 no.2
    • /
    • pp.12.1-12.17
    • /
    • 2024
  • Exosomes are double phospholipid membrane vesicles that are synthesized and secreted by a variety of cells, including T cells, B cells, dendritic cells, immune cells, are extracellular vesicles. Recent studies have revealed that exosomes can play a significant role in under both physiological and pathological conditions. They have been implicated in regulation of inflammatory responses, immune response, angiogenesis, tissue repair, and antioxidant activities, particularly in modulating immunity in autoimmune diseases (AIDs). Moreover, variations in the expression of exosome-related substances, such as miRNA and proteins, may not only offer valuable perspectives for the early warning, and prognostic assessment of various AIDs, but may also serve as novel markers for disease diagnosis. This article examines the impact of exosomes on the development of AIDs and explores their potential for therapeutic application.

Generation and characterization of 1H8 monoclonal antibody against human bone marrow stromal cells

  • Kang, Hyung Sik;Choi, Inpyo
    • IMMUNE NETWORK
    • /
    • v.1 no.1
    • /
    • pp.14-25
    • /
    • 2001
  • Background: Bone marrow stromal cells (BMSCs) express many cell surface molecules, which regulate the proliferation and differentiation of immune cells within the bone marrow. Methods: To identify cell surface molecules, which can regulate cell proliferation through cell interaction, monoclonal antibodies (MoAbs) against BMSCs were produced. Among them, 1H8 MoAb, which recognized distinctly an 80 kDa protein, abolished myeloma cell proliferation that was induced by co-culturing with BMSCs. Results: IL-6 gene expression was increased when myeloma or stromal cells were treated with 1H8 MoAb. In addition, the expression of IL-6 receptor and CD40 was up-regulated by 1H8 treatment, suggesting that the molecule recognized by 1H8 MoAb is involved in cell proliferation by modulating the expression of cell growth-related genes. Myeloma cells contain high levels of reactive oxygen species (ROS), which are related to gene expression and tumorigenesis. Treatment with 1H8 decreased the intracellular ROS level and increased PAG antioxidant gene concomitantly. Finally, 1H8 induced the tyrosine phosphorylation of several proteins in U266. Conclusion: Taken together, 1H8 MoAb recognized the cell surface molecule and triggered the intracellular signals, which led to modulate gene expression and cell proliferation.

  • PDF

Toxicities in Gene Therapy

  • Nam, Myeong-Jin
    • Toxicological Research
    • /
    • v.17
    • /
    • pp.173-183
    • /
    • 2001
  • Although there are still many technical difficulties to be overcome, recent advances in the molecular and cellular biology of gene transfer have made it likely that gene therapy will soon start to play an increasing role in clinical practice. However. safety issues are raised from vector system. It is not clear whether it is safe to incorporate genes into nuclear DNA. Little is known about the antigenicity of gene product which the immune system is encountering. In this review, some safety-related topics are introduced and discussed.

  • PDF