DOI QR코드

DOI QR Code

Changes in Human Gene Expression After Sleep Deprivation

  • Sun, Je Young (Department of Psychiatry, Kyung Hee University Hospital) ;
  • Kim, Jong Woo (Department of Psychiatry, Kyung Hee University Hospital) ;
  • Yim, Sung-Vin (Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University) ;
  • Oh, Miae (Department of Psychiatry, Kyung Hee University Hospital) ;
  • Kang, Won Sub (Department of Psychiatry, Kyung Hee University Hospital)
  • Received : 2021.11.30
  • Accepted : 2022.03.22
  • Published : 2022.04.30

Abstract

Objectives Sleep is fundamental to maintaining homeostatic control and has behavioral and psychological effects on humans. To better understand the function and pathophysiology of sleep, specific gene expressions in reference to sleep deprivation have been studied. In this study, we investigated the gene expression of peripheral blood mononuclear cells after sleep deprivation to better understand the functional consequence of sleep. Methods In eight healthy men, 24 h sleep deprivation was induced. Blood was sampled at 14:00, before and after sleep deprivation. mRNA was isolated and analyzed via microarrays. cDNAs before and after sleep deprivation were coupled to Cy3 or Cy5, respectively, and normalized cDNAs were selected with a ratio greater than two as a significant gene. Results are expressed as mean. Results Among 41174 transcripts, 38852 genes were selected as reliable, and only a small minority (< 1%) of the genes were up-or down-regulated. Total six and eleven genes were selected as significant upregulated and downregulated genes, respectively. Protein tyrosine phosphatase receptor type O was most upregulated (6.9-fold), and low-density lipoprotein receptor-related protein 5-like protein showed the most substantial inhibition (0.06-fold). Conclusions This study showed significant associations between sleep deprivation and the immune system. Acute sleep deprivation affects pathways in proinflammatory cytokines as well as metabolic pathways of glutamate and purine, neurotransmitters related to sleep and wake cycle.

Keywords

References

  1. Ramm P, Smith CT. Rates of cerebral protein synthesis are linked to slow wave sleep in the rat. Physiol Behav 1990;48:749-753. https://doi.org/10.1016/0031-9384(90)90220-X
  2. Stickgold R, Hobson JA, Fosse R, Fosse M. Sleep, learning, and dreams: off-line memory reprocessing. Science 2001;294:1052-1057. https://doi.org/10.1126/science.1063530
  3. Schmidt MH. The energy allocation function of sleep: a unifying theory of sleep, torpor, and continuous wakefulness. Neurosci Biobehav Rev 2014;47:122-153. https://doi.org/10.1016/j.neubiorev.2014.08.001
  4. Jung CM, Melanson EL, Frydendall EJ, Perreault L, Eckel RH, Wright KP. Energy expenditure during sleep, sleep deprivation and sleep following sleep deprivation in adult humans. J Physiol 2011;589(Pt 1):235-244. https://doi.org/10.1113/jphysiol.2010.197517
  5. Irwin MR, Wang M, Campomayor CO, Collado-Hidalgo A, Cole S. Sleep deprivation and activation of morning levels of cellular and genomic markers of inflammation. Arch Intern Med 2006;166:1756-1762. https://doi.org/10.1001/archinte.166.16.1756
  6. Aryal RP, Kwak PB, Tamayo AG, Gebert M, Chiu PL, Walz T, et al. Macromolecular assemblies of the mammalian circadian clock. Mol Cell 2017;67:770-782.e6. https://doi.org/10.1016/j.molcel.2017.07.017
  7. Blanco-Centurion C, Xu M, Murillo-Rodriguez E, Gerashchenko D, Shiromani AM, Salin-Pascual RJ, et al. Adenosine and sleep homeostasis in the Basal forebrain. J Neurosci 2006;26:8092-8100. https://doi.org/10.1523/JNEUROSCI.2181-06.2006
  8. Methippara MM, Kumar S, Alam MN, Szymusiak R, McGinty D. Effects on sleep of microdialysis of adenosine A1 and A2a receptor analogs into the lateral preoptic area of rats. Am J Physiol Regul Integr Comp Physiol 2005;289:R1715-R1723. https://doi.org/10.1152/ajpregu.00247.2005
  9. Saper CB, Fuller PM, Pedersen NP, Lu J, Scammell TE. Sleep state switching. Neuron 2010:22:1023-1042.
  10. Toppila J, Alanko L, Asikainen M, Tobler I, Stenberg D, PorkkaHeiskanen T. Sleep deprivation increases somatostatin and growth hormone-releasing hormone messenger RNA in the rat hypothalamus. J Sleep Res 1997;6:171-178. https://doi.org/10.1046/j.1365-2869.1997.00049.x
  11. Mackiewicz M, Sollars PJ, Ogilvie MD, Pack AI. Modulation of IL-1 beta gene expression in the rat CNS during sleep deprivation. Neuroreport 1996;7:529-533. https://doi.org/10.1097/00001756-199601310-00037
  12. Petit JM, Tobler I, Allaman I, Borbely AA, Magistretti PJ. Sleep deprivation modulates brain mRNAs encoding genes of glycogen metabolism. Eur J Neurosci 2002;16:1163-1167. https://doi.org/10.1046/j.1460-9568.2002.02145.x
  13. Rehman A, Taishi P, Fang J, Majde JA, Krueger JM. The cloning of a rat peptidoglycan recognition protein (PGRP) and its induction in brain by sleep deprivation. Cytokine 2001;13:8-17. https://doi.org/10.1006/cyto.2000.0800
  14. Wisor JP, O'Hara BF, Terao A, Selby CP, Kilduff TS, Sancar A, et al. A role for cryptochromes in sleep regulation. BMC Neurosci 2002; 3:20.
  15. Vitale-Neugebauer A, Giuditta A, Vitale B, Giaquinto S. Pattern of RNA synthesis in rabbit cortex during sleep. J Neurochem 1970;17:1263-1273. https://doi.org/10.1111/j.1471-4159.1970.tb03375.x
  16. Panov A. RNA and protein content of brain stem cells after sleep deprivation. Riv Biol 1982;75:95-99.
  17. Feezor RJ, Baker HV, Mindrinos M, Hayden D, Tannahill CL, Brownstein BH, et al. Whole blood and leukocyte RNA isolation for gene expression analyses. Physiol Genomics 2004;19:247-254. https://doi.org/10.1152/physiolgenomics.00020.2004
  18. Liew CC, Ma J, Tang HC, Zheng R, Dempsey AA. The peripheral blood transcriptome dynamically reflects system wide biology: a potential diagnostic tool. J Lab Clin Med 2006;147:126-132. https://doi.org/10.1016/j.lab.2005.10.005
  19. Ming F, Sun Q. Epigenetically silenced PTPRO functions as a prognostic marker and tumor suppressor in human lung squamous cell carcinoma. Mol Med Rep 2017;16:746-754. https://doi.org/10.3892/mmr.2017.6665
  20. Jiang R, Chen D, Hou J, Tan Z, Wang Y, Huang X, et al. Survival and inflammation promotion effect of PTPRO in fulminant hepatitis is associated with NF-κB activation. J Immunol 2014;193:5161-5170. https://doi.org/10.4049/jimmunol.1303354
  21. Choi SH, Harkewicz R, Lee JH, Boullier A, Almazan F, Li AC, et al. Lipoprotein accumulation in macrophages via toll-like receptor-4-dependent fluid phase uptake. Circ Res 2009;104:1355-1363. https://doi.org/10.1161/CIRCRESAHA.108.192880
  22. Huang YT, Li FF, Ke C, Li Z, Li ZT, Zou XF, et al. PTPRO promoter methylation is predictive of poorer outcome for HER2-positive breast cancer: indication for personalized therapy. J Transl Med 2013;11:245.
  23. Hsu SH, Motiwala T, Roy S, Claus R, Mustafa M, Plass C, et al. Methylation of the PTPRO gene in human hepatocellular carcinoma and identification of VCP as its substrate. J Cell Biochem 2013;114:1810-1818. https://doi.org/10.1002/jcb.24525
  24. You YJ, Chen YP, Zheng XX, Meltzer SJ, Zhang H. Aberrant methylation of the PTPRO gene in peripheral blood as a potential biomarker in esophageal squamous cell carcinoma patients. Cancer Lett 2012;315:138-144. https://doi.org/10.1016/j.canlet.2011.08.032
  25. Liang C, Wang X, Hu J, Lian X, Zhu T, Zhang H, et al. PTPRO promotes oxidized low-density lipoprotein induced oxidative stress and cell apoptosis through toll-like receptor 4/nuclear factor κB pathway. Cell Physiol Biochem 2017;42:495-505. https://doi.org/10.1159/000477596
  26. Zhao J, Yan S, Zhu X, Bai W, Li J, Liang C. PTPRO exaggerates inflammation in ulcerative colitis through TLR4/NF-κB pathway. J Cell Biochem 2020;121:1061-1071. https://doi.org/10.1002/jcb.29343
  27. Boyum A, Wiik P, Gustavsson E, Veiby OP, Reseland J, Haugen AH, et al. The effect of strenuous exercise, calorie deficiency and sleep deprivation on white blood cells, plasma immunoglobulins and cytokines. Scand J Immunol 1996;43:228-235. https://doi.org/10.1046/j.1365-3083.1996.d01-32.x
  28. Born J, Lange T, Hansen K, Molle M, Fehm HL. Effects of sleep and circadian rhythm on human circulating immune cells. J Immunol 1997;158:4454-4464. https://doi.org/10.4049/jimmunol.158.9.4454
  29. Sothern RB, Roitman-Johnson B, Kanabrocki EL, Yager JG, Fuerstenberg RK, Weatherbee JA, et al. Circadian characteristics of interleukin-6 in blood and urine of clinically healthy men. In Vivo 1995;9:331-339.
  30. Crofford LJ, Kalogeras KT, Mastorakos G, Magiakou MA, Wells J, Kanik KS, et al. Circadian relationships between interleukin (IL)-6 and hypothalamic-pituitary-adrenal axis hormones: failure of IL-6 to cause sustained hypercortisolism in patients with early untreated rheumatoid arthritis. J Clin Endocrinol Metab 1997;82:1279-1283. https://doi.org/10.1210/jcem.82.4.3852
  31. Szelenyi J. Cytokines and the central nervous system. Brain Res Bull 2001;54:329-338. https://doi.org/10.1016/S0361-9230(01)00428-2
  32. Tanaka S, Honda M, Toyoda H, Kodama T. Increased plasma IL-6, IL-8, TNF-alpha, and G-CSF in Japanese narcolepsy. Hum Immunol 2014;75:940-944. https://doi.org/10.1016/j.humimm.2014.06.023
  33. Alzoghaibi MA, Bahammam AS. Lipid peroxides, superoxide dismutase and circulating IL-8 and GCP-2 in patients with severe obstructive sleep apnea: a pilot study. Sleep Breath 2005;9:119-126. https://doi.org/10.1007/s11325-005-0022-1
  34. Futh R, Herder C, Forster S, Muller-Scholze S, Kruse N, Rieckmann P, et al. Evaluation of diagnostic relevance of mRNA levels in peripheral blood: predictive value for mortality in hemodialysis patients. Cytokine 2004;27:166-172. https://doi.org/10.1016/j.cyto.2004.05.006
  35. Anegon I, Cuturi MC, Trinchieri G, Perussia B. Interaction of Fc receptor (CD16) ligands induces transcription of interleukin 2 receptor (CD25) and lymphokine genes and expression of their products in human natural killer cells. J Exp Med 1988;167:452-472. https://doi.org/10.1084/jem.167.2.452
  36. Wilder-Smith A, Mustafa FB, Earnest A, Gen L, Macary PA. Impact of partial sleep deprivation on immune markers. Sleep Med 2013;14:1031-1034. https://doi.org/10.1016/j.sleep.2013.07.001
  37. Dinges DF, Douglas SD, Zaugg L, Campbell DE, McMann JM, Whitehouse WG, et al. Leukocytosis and natural killer cell function parallel neurobehavioral fatigue induced by 64 hours of sleep deprivation. J Clin Invest 1994;93:1930-1939. https://doi.org/10.1172/JCI117184
  38. Hu W, Zhang C, Wu R, Sun Y, Levine A, Feng Z. Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proc Natl Acad Sci U S A 2010;107:7455-7460. https://doi.org/10.1073/pnas.1001006107
  39. Hu Y, Riesland L, Paterson AJ, Kudlow JE. Phosphorylation of mouse glutamine-fructose-6-phosphate amidotransferase 2 (GFAT2) by cAMP-dependent protein kinase increases the enzyme activity. J Biol Chem 2004;279:29988-29993. https://doi.org/10.1074/jbc.M401547200
  40. Brancaccio M, Patton AP, Chesham JE, Maywood ES, Hastings MH. Astrocytes control circadian timekeeping in the suprachiasmatic nucleus via glutamatergic signaling. Neuron 2017;93:1420-1435.e5. https://doi.org/10.1016/j.neuron.2017.02.030
  41. Bjorness TE, Dale N, Mettlach G, Sonneborn A, Sahin B, Fienberg AA, et al. An adenosine-mediated glial-neuronal circuit for homeostatic sleep. J Neurosci 2016;36:3709-3721. https://doi.org/10.1523/JNEUROSCI.3906-15.2016
  42. Diatchenko L, Romanov S, Malinina I, Clarke J, Tchivilev I, Li X, et al. Identification of novel mediators of NF-kappaB through genome-wide survey of monocyte adherence-induced genes. J Leukoc Biol 2005;78:1366-1377. https://doi.org/10.1189/jlb.0405211
  43. Sekiya T, Kashiwagi I, Yoshida R, Fukaya T, Morita R, Kimura A, et al. Nr4a receptors are essential for thymic regulatory T cell development and immune homeostasis. Nat Immunol 2013;14:230-237. https://doi.org/10.1038/ni.2520
  44. Fassett MS, Jiang W, D'Alise AM, Mathis D, Benoist C. Nuclear receptor Nr4a1 modulates both regulatory T-cell (Treg) differentiation and clonal deletion. Proc Natl Acad Sci U S A 2012;109:3891-3896. https://doi.org/10.1073/pnas.1200090109
  45. Li QX, Ke N, Sundaram R, Wong-Staal F. NR4A1, 2, 3--an orphan nuclear hormone receptor family involved in cell apoptosis and carcinogenesis. Histol Histopathol 2006;21:533-540.
  46. Perez-Torres S, Miro X, Palacios JM, Cortes R, Puigdomenech P, Mengod G. Phosphodiesterase type 4 isozymes expression in human brain examined by in situ hybridization histochemistry and [3H]rolipram binding autoradiography. Comparison with monkey and rat brain. J Chem Neuroanat 2000;20:349-374. https://doi.org/10.1016/S0891-0618(00)00097-1
  47. Baillie GS, Sood A, McPhee I, Gall I, Perry SJ, Lefkowitz RJ, et al. beta-Arrestin-mediated PDE4 cAMP phosphodiesterase recruitment regulates beta-adrenoceptor switching from Gs to Gi. Proc Natl Acad Sci U S A 2003;100:940-945. https://doi.org/10.1073/pnas.262787199
  48. Yun S, Budatha M, Dahlman JE, Coon BG, Cameron RT, Langer R, et al. Interaction between integrin α5 and PDE4D regulates endothelial inflammatory signalling. Nat Cell Biol 2016;18:1043-1053. https://doi.org/10.1038/ncb3405
  49. Rock PL, Roiser JP, Riedel WJ, Blackwell AD. Cognitive impairment in depression: a systematic review and meta-analysis. Psychol Med 2014;44:2029-2040. https://doi.org/10.1017/S0033291713002535
  50. Gottlieb DJ, O'Connor GT, Wilk JB. Genome-wide association of sleep and circadian phenotypes. BMC Med Genet 2007;8 Suppl 1:S9.
  51. Molina CE, Leroy J, Richter W, Xie M, Scheitrum C, Lee IO, et al. Cyclic adenosine monophosphate phosphodiesterase type 4 protects against atrial arrhythmias. J Am Coll Cardiol 2012;59:2182-2190. https://doi.org/10.1016/j.jacc.2012.01.060
  52. Teboul M, Barrat-Petit MA, Li XM, Claustrat B, Formento JL, Delaunay F, et al. Atypical patterns of circadian clock gene expression in human peripheral blood mononuclear cells. J Mol Med (Berl) 2005;83:693-699. https://doi.org/10.1007/s00109-005-0697-6
  53. Boivin DB, James FO, Wu A, Cho-Park PF, Xiong H, Sun ZS. Circadian clock genes oscillate in human peripheral blood mononuclear cells. Blood 2003;102:4143-4145. https://doi.org/10.1182/blood-2003-03-0779
  54. Kavcic P, Rojc B, Dolenc-Groselj L, Claustrat B, Fujs K, Poljak M. The impact of sleep deprivation and nighttime light exposure on clock gene expression in humans. Croat Med J 2011;52:594-603. https://doi.org/10.3325/cmj.2011.52.594