• Title/Summary/Keyword: immune response system

Search Result 488, Processing Time 0.03 seconds

A Vibration Control of the Strcture using Immune Response Algorithm (면역반응 알고리즘을 이용한 구조물의 진동제어)

  • 이영진;이권순
    • Journal of Korean Port Research
    • /
    • v.13 no.2
    • /
    • pp.389-398
    • /
    • 1999
  • In the biological immunity, the immune system of organisms regulates the antibody and T-cells to protect the attack from the foreign materials which are virus, germ cell, and other antigens, and supports their stable state. It has similar characteristics that has the adaptation and robustness to overcome disturbances and to control the plant of engineering application. In this paper, we build a model of the T-cell regulated immune response mechanism. We have also designed an immune response controller(IRC) focusing on the T-cell regulated immune response of the biological immune system that include both a help part to control the response and a suppress part to adjust system stabilization effect. We show some computer simulation to control the vibration of building structure system with strong wind forces excitation also demonstrate the efficiency of the proposed controller for applying a practical system even with existing nonlinear terms.

  • PDF

A Design of An Active PID control using Immune Algorithm for Vibration Control of Building Structure (구조물 진동제어를 위한 Immune Algorithm을 이용한 Active PID 제어기 설계)

  • Lee, Young-Jin;Cho, Hyun-Cheol;Lee, Kwon-Soon
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.72-74
    • /
    • 2005
  • In this paper, we propose an adaptive PID controller using a cell-mediated immune response to improve a PID control performance. The proposed controller is based on the specific immune response of the biological immune system that is cell-mediated immunity. The immune system of organisms in the real body regulates the antibody and the T-cells to protect an attack from the foreign materials like virus, germ cells, and other antigens. It has similar characteristics that are the adaptation and robustness to overcome disturbances and to control the plant of engineering application. We first build a model of the T-cell regulated immune response mechanism and then designed an I-PID controller focusing on the T-cell regulated immune response of the biological immune system. We apply the proposed methodology to building structures to mitigate vibrations due to strong winds for evaluation of control performances. Through computer simulations, system responses are illustrated and additionally compared to traditional control approaches.

  • PDF

A Study on Nonlinear PID Controller Design Using a Cell-Mediated Immune Response (세포성 면역 반응을 이용한 비선형 PID 제어기 설계에 관한 연구)

  • Park Jin-Hyun;Choi Young-Kiu
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.5
    • /
    • pp.259-267
    • /
    • 2003
  • In this paper, we propose a nonlinear variable PID controller using a cell-mediated immune response. An immune feedback response is based on the functioning of biological T-cells. An immune feedback response and P-controller of conventional PID controllers resemble each other in role and mechanism. Therefore, we extend immune feedback mechanism to nonlinear PE controller. And in order to choose the optimal nonlinear PID controller games, we also propose the on-line tuning algorithm of nonlinear functions parameters in immune feedback mechanism. The trained parameters of nonlinear functions are adapted to the variations of the system parameters and any command velocity. And the adapted parameters obtained outputs of nonlinear functions with an optimal control performance. To verify performances of the proposed control systems, the speed control of nonlinear BC motor is performed. The simulation results show that the proposed control systems are effective in tracking a command velocity under system variations.

Aging of Immune System (면역 반응체계의 노화)

  • Chung, Kyung Tae
    • Journal of Life Science
    • /
    • v.29 no.7
    • /
    • pp.817-823
    • /
    • 2019
  • Immune system provides defense integrity of body against external invaders. In order to accomplish the important defending role immune system is composed of many different components which are regenerated continuously during lifespan. The key components are professional killing cells such as macrophage, neutrophil, natural killer cell, and cytotoxic T cell and professional blocking molecule, antibody, which is produced by plasma cell, the terminal differentiated B cell. Immune response is orchestrated harmoniously by all these components mediated through antigen presenting cells such as dendritic cells. Immune responses can be divided into two ways: innate immune response and adaptive immune response depending on induction mechanism. Aging is a broad spectrum of physiological changes. Likewise other physiological changes, the immune components and responses are wane as aging is progressing. Immune responses become decline and dysregulating, which is called immunosenescense. Immune components of both innate and adaptive immune response are affected as aging progresses leading to increased vulnerability to infectious diseases. Numbers of immune cells and amounts of soluble immune factors were decreased in aged animal models and human and also functional and structural alterations in immune system were reduced and declined. Cellular intrinsic changes were discovered as well. Recent researches focusing on aging have been enormously growing. Many advanced tools were developed to bisect aging process in multi-directions including immune system area. This review will provide a broad overview of aging-associated changes of key components of immunity.

Studies on the Effect of Captafol and Ethanol the Murine Immune System (Captafol 免疫毒性에 미치는 Ethanol의 영향)

  • 박귀례
    • Journal of Environmental Health Sciences
    • /
    • v.14 no.1
    • /
    • pp.115-122
    • /
    • 1988
  • Captafol (1H-Isoindole-1.3(2H)-dione, 3a, 4, 7, 7a-tetrahydro-2-[1, 1, 2, 2-tetrahydroethyltkio]) is widely used as fungicide in agriculture. Immune modulatory effects of captafol and ethanol were studied in mice. Mice administered captafol intra peritoneally every other day for 5 times, and ethanol per os as captafol. Mice were sensitized and challenged with sheep red blood cells, serum antibody titer, foot pad swelling, and rosette forming cell number were mediated immune response. 1. The result show that humoral immune response and cell mediatea response were suppressed by captafol. 2. Especially effect of ethanol on the captafol immune response were significantly suppressed the humoral immune response and cell mediated immune response.

  • PDF

Role of the prophenoloxidase-activating system in the innate immune response and cuticular melanization in the silkworm

  • Kwang Sik, Lee
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.45 no.2
    • /
    • pp.43-48
    • /
    • 2022
  • Bombyx mori is a representative industrial insect and is used in silk production. Additionally, it serves as an insect model in molecular studies. To date, various molecular studies on its physiological characteristics, including the innate immune response and cuticular melanization, have been conducted. The melanization, including cuticular melanization, in insects is controlled by the prophenoloxidase-activating system, which is also involved in their innate immune response. In this review, to better understand the molecular mechanisms underlying the prophenoloxidase-activating system in the silkworm, the roles of five biomolecules, namely tyrosine hydroxylase, prophenoloxidase-activating enzyme, phenoloxidase, serine protease homolog, and immulectin, are discussed.

Transcriptome Analysis to Characterize the Immune Response of NecroX-7 in Mouse CD4+ T Cells

  • Kim, Eun-Jung
    • Biomedical Science Letters
    • /
    • v.21 no.2
    • /
    • pp.60-68
    • /
    • 2015
  • NecroX-7 is a novel small compound of the NecroX series based on the indole moiety, which has potent cytoprotective and antioxidant properties. We previously detected potential immune regulatory effects of NecroX-7 in immune related diseases like Graft-versus-Host Disease. However, the function and the underlying mechanisms of immunological effects of NecroX-7 in the immune system have not been well established. In this study, we investigated the immune response characterization of differentially expressed genes of NecroX-7 administration in $CD4^+$ T cells by microarray analysis. $CD4^+$ T cells stimulated with NecroX-7 ($40{\mu}M$) or vehicle for 72 hours resulted in the identification of 337 differentially expressed genes (1.5 fold, P<0.05) by expression profiling analysis. Twenty eight of the explored NecroX-7-regulated genes were related to immune system processes. These genes were validated by quantitative real-time PCR. The most significant genes were glutathione reductase, eukaryotic translation elongation factor 1, lymphotoxin-alpha, heat shock protein 9 and chloride intracellular channel protein 4. These findings demonstrate the strongly immune response of NecroX-7 in $CD4^+$ T cells, suggesting that cytoprotection and immune regulation may underlie the critical aspects of NecroX-7 exposure.

Development of Vaccine Delivery System and Challenges (백신 전달기술 개발 동향과 과제)

  • Jung, Hyung-Il;Kim, Jung-Dong;Kim, Mi-Roo;Dangol, Manita
    • KSBB Journal
    • /
    • v.25 no.6
    • /
    • pp.497-506
    • /
    • 2010
  • Vaccine is a protective clinical measure capable of persuading immune system against infectious agents. Vaccine can be categorized as live attenuated and inactivated. Live attenuated vaccines activate immunity similar to natural infection by replicating living organisms whereas inactivated vaccines are either whole cell vaccines, eliciting immune response by killed organisms,or subunit vaccines, stimulating immunity by non-replicating sub cellular parts. The components of vaccine play a critical role in deciding the immune response mediated by the vaccine. The innate immune responds against the antigen component. Adjuvants represent an importantcomponent of vaccine for enhancing the immunogenicity of the antigens. Subunit vaccines with isolated fractions of killed and recombinant antigens are mostly co-administered with adjuvants. The delivery system of the vaccine is another essential component to ensurethat vaccine is delivered to the right target with right dosage form. Furthermore, vaccine delivery system ensures that the desired immune response is achieved by manipulating the optimal interaction of vaccine and adjuvantwith the immune cell. The aforementioned components along with routes of administration of vaccine are the key elements of a successful vaccination procedure. Vaccines can be administered either orally or by parenteral routes. Many groups had made remarkable efforts for the development of new vaccine and delivery system. The emergence of new vaccine delivery system may lead to pursue the immunization goals with better clinical practices.

Effect of Di-(2-ethyl hexyl) Phthalate on Immune Response in Mice (Di-(2-ethyl hexyl) phthalate가 mouse의 면역 반응에 미치는 영향)

  • 임수한;홍사욱;안영근;정규혁
    • Environmental Analysis Health and Toxicology
    • /
    • v.4 no.1_2
    • /
    • pp.67-73
    • /
    • 1989
  • Recently pathotoxicological study of lymphoid organs by administration of some phthalate ester in rats, indicated marked effect of architechure of thymus, spleen, and lymphonodes. Dioctyl phthalate (DOP), one of the phthalate ester, caused statistically significant reduction in the weights of various lymphoid organs. This senstivity of the lymphoid organ to phthalate toxicity which could lead to adverse effects on the immune response and also suppression of immune system. Therfore it is possible the presense of di-(2-ethylhexyl) phthalate (DEHP), one of the phthalate ester as well as DOP, in spleen and other organs might have some moderately effect on the function of the immune system, So our present study was proceeded to assess the effect of DEHP on the immunotoxicity in mouse. In the immune response of DEHP administered mice, HA, HY, Arthus reaction and Rosette forming cell were decreased but DTH was increased. Furthermore, in the DEHP plus ethanol group, HA, HY, Arthus reaction and Rosette forming cell were remarkably decreased and elevation of DTH was inhibited.

  • PDF

Effect of Dietary Brown Seaweed Levels on the Antioxidant System in Broiler Chicks Activated Innate Immune Response (미역의 급여 수준이 타고난 면역반응이 활성화한 육계병아리의 혈액 항산화 균형에 미치는 영향)

  • Lee, H.J.;Park, I.K.;Im, J.T.;Choi, D.Y.;Choi, C.J.;Choi, J.B.;Lee, H.G.;Choi, Y.J.;Koh, T.S.
    • Journal of Animal Science and Technology
    • /
    • v.47 no.1
    • /
    • pp.29-38
    • /
    • 2005
  • Effect of dietary brown seaweed(Undaria pinnatifida) levels on the anti-oxidant enzyme system was evaluated in blood of broiler chicks activated innate immune response. Day-old broiler chicks were fed diets containing 0.0(basal), 1.0, 2.0 and 4.0 % of brown seaweed for 4 weeks. The innate immune response was activated by injecting Salmonella typhymurium lipopolysaccharide(LPS) i.p. at 8, 10 and 12 day of age. The activation of innate immune response enhanced(p< 0.01) and the brown seaweed 1.0 and 2.0 % diets reduced(P< 0.05) the superoxide dismutase(SOD) activity in erythrocyte cytosol significantly. The activation of innate immune response elevated significantly the levels of peroxide and the activity of peroxidase in plasma, while the levels of dietary brown seaweed resulted in a significant linear increase in peroxidase activity in plasma of normal bird. Experience of the innate immune response in 4 week-old chicks reduced linearly the plasma level of peroxide with the level of brown seaweed and enhanced the plasma peroxidase activity. Also, the plasma of normal birds fed the brown seaweed showed higher level of peroxide and lower activity of peroxidase. The results indicated that dietary brown seaweed affected SOD and peroxidase activities in blood of broiler chicks during activation of innate immune response.