Browse > Article
http://dx.doi.org/10.5352/JLS.2019.29.7.817

Aging of Immune System  

Chung, Kyung Tae (Department of Clinical Laboratory Science, Dong-Eui University)
Publication Information
Journal of Life Science / v.29, no.7, 2019 , pp. 817-823 More about this Journal
Abstract
Immune system provides defense integrity of body against external invaders. In order to accomplish the important defending role immune system is composed of many different components which are regenerated continuously during lifespan. The key components are professional killing cells such as macrophage, neutrophil, natural killer cell, and cytotoxic T cell and professional blocking molecule, antibody, which is produced by plasma cell, the terminal differentiated B cell. Immune response is orchestrated harmoniously by all these components mediated through antigen presenting cells such as dendritic cells. Immune responses can be divided into two ways: innate immune response and adaptive immune response depending on induction mechanism. Aging is a broad spectrum of physiological changes. Likewise other physiological changes, the immune components and responses are wane as aging is progressing. Immune responses become decline and dysregulating, which is called immunosenescense. Immune components of both innate and adaptive immune response are affected as aging progresses leading to increased vulnerability to infectious diseases. Numbers of immune cells and amounts of soluble immune factors were decreased in aged animal models and human and also functional and structural alterations in immune system were reduced and declined. Cellular intrinsic changes were discovered as well. Recent researches focusing on aging have been enormously growing. Many advanced tools were developed to bisect aging process in multi-directions including immune system area. This review will provide a broad overview of aging-associated changes of key components of immunity.
Keywords
Aging; Age-associated B cell; immunosenescense; lymphocytes; memory cells;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Pawelec, G. 2018. Immune parameters associated with mortality in the elderly are context-dependent: lessons from Sweden, Holland and Belgium. Biogerontology 19, 537-545.   DOI
2 Pawelec, G., Solana, R., Remarque, E. and Mariani, E. 1998. Impact of aging on innate immunity. J. Leukoc. Biol. 64, 703-712.   DOI
3 Plowden, J., Renshaw-Hoelscher, M., Engleman, C., Katz, J. and Sambhara, S. 2004. Innate immunity in aging: impact on macrophage function. Aging Cell. 3, 161-167.   DOI
4 Rafael, S., Graham, P. and Raquel, T. 2006. Aging and innate immunity. Immunity 24, 491-494.   DOI
5 Rubtsov, A. V., Rubtsova, K., Fischer, A., Meehan, R. T., Gillis, J. Z., Kappler, J. W. and Marrack, P. 2011. Toll-like receptor 7 (TLR7)-driven accumulation of a novel $CD11c^+$ B-cell population is important for the development of autoimmunity. Blood 118, 1305-1315.   DOI
6 Rubtsova, K., Rubtsov, A. V., Cancro, M. P. and Marrack, P. 2015. Age-associated B Cells: A T-bet-dependent effector with roles in protective and pathogenic immunity. J. Immunol. 195, 1933-1937.   DOI
7 Sansoni, P., Vescovini, R., Fagnoni, F., Biasini, C., Zanni, F., Zanlari, L., Telera, A., Lucchini, G., Passeri, G., Monti, D., Franceschi, C. and Passeri, M. 2008. The immune system in extreme longevity. Exp. Gerontol. 43, 61-65.   DOI
8 Shaw, A. C., Panda, A., Joshi, S. R., Qian, F., Allore, H. G. and Montgomery, R. R. 2011. Dysregulation of human Toll-like receptor function in aging. Ageing Res. Rev. 10, 346-353.   DOI
9 Scholz, J. L., Diaz, A., Riley, R. L., Cancro, M. P. and Frasca, D. 2013. A comparative review of aging and B cell function in mice and humans. Curr. Opin. Immunol. 25, 504-510.   DOI
10 Shahaf, G., Johnson, K. and Mehr, R. 2006. B cell development in aging mice: lessons from mathematical modeling. Int. Immunol. 18, 31-39.   DOI
11 Solana, R., Pawelec, G. and Tarazona, R. 2006. Aging and innate immunity. Immunity 24, 491-494.   DOI
12 Strindhall, J., Skog, M., Ernerudh, J., Bengner, M., Löfgren, S., Matussek, A., Nilsson, B. O. and Wikby, A. 2013. The inverted CD4/CD8 ratio and associated parameters in 66-year-old individuals: the Swedish HEXA immune study. Age (Dordr) 35, 985-991.   DOI
13 Swain, S. L., Kugler-Umana, O., Kuang, Y. and Zhang, W. 2017. The properties of the unique age-associated B cell subset reveal a shift in strategy of immune response with age. Cell Immunol. 321, 52-60.   DOI
14 Tabibian-Keissar, H., Hazanov, L., Schiby, G., Rosenthal, N., Rakovsky, A., Michaeli, M., Shahaf, G. L., Pickman, Y., Rosenblatt, K., Melamed, D., Dunn-Walters, D., Mehr, R. and Barshack, I. 2016. Aging affects B-cell antigen receptor repertoire diversity in primary and secondary lymphoid tissues. Eur. J. Immunol. 46, 480-492.   DOI
15 Tsay, G. J. and Zouali, M. 2018. The interplay between innate-like B cells and other cell types in autoimmunity. Front. Immunol. 9, 1064.   DOI
16 Wikby, A., Olsson, J., Lofgren, S., Nilsson, B. O. and Ferguson, F. G. 2002. Expansions of peripheral blood CD8 T-lymphocyte subpopulations and an association with cytomegalovirus seropositivity in the elderly: the Swedish NONA immune study. Exp. Gerontol. 37, 445-453.   DOI
17 Becklund, B. R., Purton, J. F., Ramsey, C., Favre, S., Vogt. T. K., Martin, C. E., Spasova, D. S., Sarkisyan, G., LeRoy, E., Tan, J. T., Wahlus, H., Bondi-Boyd, B., Luther, S. A. and Surh, C. D. 2016. The aged lymphoid tissue environment fails to support naïve T cell homeostasis. Sci. Rep. 6, 30842.   DOI
18 Wikby, A., Ferguson, F., Forsey, R., Thompson, J., Strindhall, J., Lofgren, S., Nilsson, B. O., Ernerudh, J., Pawelec, G. and Johansson, B. 2005. An immune risk phenotype, cognitive impairment, and survival in very late life: impact of allostatic load in Swedish octogenarian and nonagenarian humans. J. Gerontol. A Biol. Sci. Med. Sci. 60, 556-565.   DOI
19 Yanes, R. E., Gustafson, C. E., Weyand, C. M. and Goronzy, J. J. 2017. Lymphocyte generation and population homeostasis throughout life. Semin. Hematol. 54, 33-38.   DOI
20 Bailey, K. L., Smith, L. M., Heires, A. J., Katafiasz, D. M., Romberger, D. J. and LeVan, T. D. 2018. Aging leads to dysfunctional innate immune responses to TLR2 and TLR4 agonists. Aging Clin. Exp. Res. doi:10.1007/s40520-018-1064-0.   DOI
21 Chougnet, C. A., Thacker, R. I., Shehata, H. M., Hennies, C. M., Lehn, M. A., Lages, C. S. and Janssen, E. M. 2015. Loss of phagocytic and antigen cross-presenting capacity in aging dendritic cells is associated with mitochondrial dysfunction. J. Immunol. 195, 2624-2632.   DOI
22 Gibson, K. L., Wu, Y. C., Barnett, Y., Duggan, O., Vaughan, R., Kondeatis, E., Nilsson, B. O., Wikby, A., Kipling, D. and Dunn-Walters, D. K. 2009. B-cell diversity decreases in old age and is correlated with poor health status. Aging Cell. 8, 18-25.   DOI
23 Derhovanessian, E., Larbi, A. and Pawelec, G. 2009. Biomarkers of human immunosenescence: impact of Cytomegalovirus infection. Curr. Opin. Immunol. 21, 440-445.   DOI
24 Dunn-Walters, D., Townsend, C., Sinclair, E. and Stewart, A. 2018. Immunoglobulin gene analysis as a tool for investigating human immune responses. Immunol. Rev. 284, 132-147.   DOI
25 Frasca, D. 2018. Senescent B cells in aging and age-related diseases: Their role in the regulation of antibody responses. Exp. Gerontol. 107, 55-58.   DOI
26 Fulop, T., Larbi, A., Douziech, N., Fortin, C., Guerard, K. P., Lesur, O., Khalil, A. and Dupuis, G. 2004. Signal transduction and functional changes in neutrophils with aging. Aging Cell. 3, 217-226.   DOI
27 Fulop, T., Larbi, A. and Pawelec, G. 2013. Human T cell aging and the impact of persistent viral infections. Front. Immunol. 4, 271.   DOI
28 Hao, Y., O'Neill, P., Naradikian, M. S., Scholz, J. L. and Cancro, M. P. 2011. A B-cell subset uniquely responsive to innate stimuli accumulates in aged mice. Blood 118, 1294-1304.   DOI
29 Kogut, I., Scholz, J. L., Cancro, M. P. and Cambier, J. C. 2012. B cell maintenance and function in aging. Semin. Immunol. 24, 342-349.   DOI
30 Labrie, J. E. 3rd, Sah, A. P., Allman, D. M., Cancro, M. P. and Gerstein, R. M. 2004. Bone marrow microenvironmental changes underlie reduced RAG-mediated recombination and B cell generation in aged mice. J. Exp. Med. 200, 411-423.   DOI
31 Lopez-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. and Kroemer, G. 2013. The hallmarks of aging. Cell 153, 1194-1217.   DOI
32 Murasko, D. M. and Jiang, J. 2005. Response of aged mice to primary virus infections. Immunol. Rev. 205, 285-296.   DOI
33 Manser, A. R. and Uhrberg, M. 2016. Age-related changes in natural killer cell repertoires: impact on NK cell function and immune surveillance. Cancer Immunol. Immunother. 65, 417-426.   DOI
34 Maue, A. C., Yager, E. J., Swain, S. L., Woodland, D. L., Blackman, M. A. and Haynes, L. 2009 T-cell immunosenescence: lessons learned from mouse models of aging. Trends Immunol. 30, 301-305.   DOI
35 Muller, L., Pawelec, G. and Derhovanessian, E. 2013. The immune system during aging. In: Calder P, Yaqoob P (eds) Diet, immunity and inflammation. Woodhead Publishing. Oxford, 631-651.
36 Muller, L., Di Benedetto, S. and Pawelec, G. 2019. The immune system and its dysregulation with aging. Subcell. Biochem. 91, 21-43.   DOI
37 Muller-Sieburg, C. E., Sieburg, H. B., Bernitz, J. M. and Cattarossi, G. 2012. Stem cell heterogeneity: implications for aging and regenerative medicine. Blood 119, 3900-3907.   DOI
38 Nikolich-Zugich, J. 2018. The twilight of immunity: emerging concepts in aging of the immune system. Nat. Immunol. 19, 10-19.   DOI
39 Olsson, J., Wikby, A., Johansson, B., Löfgren, S., Nilsson, B. O. and Ferguson, F. G. 2000. Age-related change in peripheral blood T-lymphocyte subpopulations and cytomegalovirus infection in the very old: the Swedish longitudinal OCTO immune study. Mech. Ageing Dev. 121, 187-201.   DOI
40 Paganelli, R., Quinti, I., Fagiolo, U., Cossarizza, A., Ortolani, C., Guerra, E., Sansoni, P., Pucillo, L. P., Scala, E. and Cozzi, E., et al. 1992. Changes in circulating B cells and immunoglobulin classes and subclasses in a healthy aged population. Clin. Exp. Immunol. 90, 351-354.   DOI
41 Pawelec, G. 2014. Immunosenenescence: role of cytomegalovirus. Exp. Gerontol. 54, 1-5.   DOI