DOI QR코드

DOI QR Code

Role of the prophenoloxidase-activating system in the innate immune response and cuticular melanization in the silkworm

  • Kwang Sik, Lee (College of Natural Resources and Life Science, Dong-A University)
  • Received : 2022.12.02
  • Accepted : 2022.12.22
  • Published : 2022.12.30

Abstract

Bombyx mori is a representative industrial insect and is used in silk production. Additionally, it serves as an insect model in molecular studies. To date, various molecular studies on its physiological characteristics, including the innate immune response and cuticular melanization, have been conducted. The melanization, including cuticular melanization, in insects is controlled by the prophenoloxidase-activating system, which is also involved in their innate immune response. In this review, to better understand the molecular mechanisms underlying the prophenoloxidase-activating system in the silkworm, the roles of five biomolecules, namely tyrosine hydroxylase, prophenoloxidase-activating enzyme, phenoloxidase, serine protease homolog, and immulectin, are discussed.

Keywords

References

  1. Andersen SO (2005) Cuticular sclerotization and tanning. In: Gilbert LI, Iatrou K, Gill SS (Eds.), Comprehensive Molecular Insect Science vol. 4. Elsevier, Amsterdam, pp. 145-170. 
  2. Arakane Y, Lomakin J, Beeman RW, Muthukrishnan S, Gehrke SH, Kanost MR, et al. (2009) Molecular and functional analyses of amino acid decarboxylases involved in cuticle tanning in Tribolium castaneum. J Biol Chem 284, 16584-16594.  https://doi.org/10.1074/jbc.M901629200
  3. Asano T, Ashida M (2001a) Transepithelially transported prophenoloxidase in the cuticle of the silkworm, Bombyx mori: identification of its methionyl residues oxidized to methionine sulfoxides. J Biol Chem 276, 11113-11125.  https://doi.org/10.1074/jbc.m008425200
  4. Asano T, Ashida M (2001b) Cuticular pro-phenoloxidase of the silkworm, Bombyx mori: purification and demonstration of its transport from hemolymph. J Biol Chem 276, 11100-11112.  https://doi.org/10.1074/jbc.m008426200
  5. Ashida M, Brey PT (1995) Role of the integument in insect defense: pro-phenol oxidase cascade in the cuticular matrix. Proc Natl Acad Sci U. S. A. 92, 10698-10702.  https://doi.org/10.1073/pnas.92.23.10698
  6. Cambi A, Koopman M, Figdor CG (2005) How C-type lectins detect pathogens. Cell Microbiol 7, 481-488.  https://doi.org/10.1111/j.1462-5822.2005.00506.x
  7. Cerenius L, Soderhall K (2004) The prophenoloxidase-activating system in invertebrates. Immunol Rev 198, 116-126. https://doi.org/10.1111/j.0105-2896.2004.00116.x
  8. Cerenius L, Lee BL, Soderhall K (2008) The proPO-system: pros and cons for its role in invertebrate immunity. Trends Immunol 29, 263-271.  https://doi.org/10.1016/j.it.2008.02.009
  9. Dodd RB, Drickamer K (2001) Lectin-like proteins in model organisms: implications for evolution of carbohydrate-binding activity. Glycobiology 11, 71R-79R.  https://doi.org/10.1093/glycob/11.5.71R
  10. Futahashi R, Fujiwara H (2005) Melanin-synthesis enzymes coregulate stage-specific larval cuticular markings in the swallowtail butterfly, Papilio xuthus. Dev Genes Evol 215, 519-529.  https://doi.org/10.1007/s00427-005-0014-y
  11. Gorman MJ, An C, Kanost MR (2007) Characterization of tyrosine hydroxylase from Manduca sexta. Insect Biochem Mol Biol 37, 1327-1337.  https://doi.org/10.1016/j.ibmb.2007.08.006
  12. Gorman MJ, Arakane Y (2010) Tyrosine hydroxylase is required for cuticle sclerotization and pigmentation in Tribolium castaneum. Insect Biochem Mol Biol 40, 267-273.  https://doi.org/10.1016/j.ibmb.2010.01.004
  13. Hashimoto K, Yamano Y, Morishima I (2008) Induction of tyrosine hydroxylase gene expression by bacteria in the fat body of erisilkworm, Samia cynthia ricini. Comp Biochem Physiol B 149, 501-506.  https://doi.org/10.1016/j.cbpb.2007.11.010
  14. Hiruma K, Riddiford LM (2009) The molecular mechanisms of cuticular melanization: the ecdysone cascade leading to dopa decarboxylase expression in Manduca sexta. Insect Biochem Mol Biol 39, 245-253.  https://doi.org/10.1016/j.ibmb.2009.01.008
  15. Hopkins TL, Kramer KJ (1992) Insect cuticle sclerotization. Ann Rev Entomol 37, 273-302. 
  16. Jiang H, Kanost MR (2000) The clip-domain family of serine proteinases in arthropods. Insect Biochem Mol Biol 30, 95-105.  https://doi.org/10.1016/S0965-1748(99)00113-7
  17. Kanost MR, Jiang H, Yu ZQ (2004) Innate immune responses of a lepidopteran insect, Manduca sexta. Immunol Rev 198, 97-105.  https://doi.org/10.1111/j.0105-2896.2004.0121.x
  18. Kim BY, Jin BR (2017) The dual roles of Bombyx mori immulectin in cuticular melanization and innate immunity. J Aisa-Pac Entomol 20, 761-766.  https://doi.org/10.1016/j.aspen.2017.05.002
  19. Koizumi N, Morozumi A, Imamura M, Tanaka E, Iwahana H, Sato R (1997) Lipopolysaccharide-binding proteins and their involvement in the bacterial clearance from the hemolymph of the silkworm Bombyx mori. Eur J Biochem 248, 217-224.  https://doi.org/10.1111/j.1432-1033.1997.t01-1-00217.x
  20. Koizumi N, Imai Y, Morozumi A, Imamura M, Kadotani T, Yaoi K, et al. (1999a) Lipopolysaccharide-binding protein of Bombyx mori participates in a hemocyte-mediated defense reaction against gram-negative bacteria. J Insect Physiol 45, 853-859.  https://doi.org/10.1016/S0022-1910(99)00069-4
  21. Koizumi N, Imamura M, Kadotani T, Yaoi K, Iwahana H, Sato R (1999b) The lipopolysaccharide-binding protein participating in a hemocyte nodule formation in the silkworm Bombyx mori is a novel member of the C-type lectin superfamily with two different tandem carbohydrate-recognition domains. FEBS Lett 443, 139-143.  https://doi.org/10.1016/S0014-5793(98)01701-3
  22. Lee KS, Kim BY, Jin BR (2015) Differential regulation of tyrosine hydroxylase in cuticular melanization and innate immunity in the silkworm Bombyx mori. J Asia-Pac Entomol 18, 765-770.  https://doi.org/10.1016/j.aspen.2015.09.008
  23. Lee KS, Kim BY, Choo YM, Jin BR (2018) Dual role of the serine protease homolog BmSPH-1 in the development and immunity of the silkworm Bombyx mori. Dev Comp Immunol 85, 170-176.  https://doi.org/10.1016/j.dci.2018.04.011
  24. Lemaitre B, Hoffmann J (2007) The host defense of Drosophila melanogaster. Annu Rev Immunol 25, 697-743.  https://doi.org/10.1146/annurev.immunol.25.022106.141615
  25. Liu C, Yamamoto K, Cheng TC, Kadono-Okuda K, Narukawa J, Liu SP, et al. (2010) Repression of tyrosine hydroxylase is responsible for the sex-linked chocolate mutation of the silkworm, Bombyx mori. Proc Natl Acad Sci U. S. A. 107, 12980-12985.  https://doi.org/10.1073/pnas.1001725107
  26. Rao XJ, Shahzad T, Liu S, Wu P, He YT, Sun WJ, et al. (2015) Identification of C-type lectin-domain proteins (CTLDPs) in silkworm Bombyx mori. Dev Comp Immunol 53, 328-338.  https://doi.org/10.1016/j.dci.2015.07.005
  27. Riley PA (1997) Melanin. Int J Biochem Cell Biol 29, 1235-1239.  https://doi.org/10.1016/S1357-2725(97)00013-7
  28. Kramer KJ, Hopkins TL (1987) Tyrosine metabolism for insect cuticle tanning. Arch Insect Biochem Physiol 6, 279-301.  https://doi.org/10.1002/arch.940060406
  29. Takase H, Watanabe A, Yoshizawa Y, Kitami M, Sato R (2009) Identification and comparative analysis of three novel C-type lectins from the silkworm with functional implications in pathogen recognition. Dev Comp Immunol 33, 789-800.  https://doi.org/10.1016/j.dci.2009.01.005
  30. True JR, Edwards KA, Yamamoto D. Carroll SB (1999) Drosophila wing melanin patterns from by vein-dependent elaboration of enzymatic prepatterns. Curr Biol 9, 1382-1391.  https://doi.org/10.1016/S0960-9822(00)80083-4
  31. Watanabe A, Miyazawa S, Kitami M, Tabunoki H, Ueda K, Sato R (2006) Characterization of a novel C-type lectin, Bombyx mori multibinding protein, from the B. mori hemolymph: mechanism of wide-range microorganism recognition and role in immunity. J Immunol 177, 4594-4604.  https://doi.org/10.4049/jimmunol.177.7.4594
  32. Wright TRF (1987) The genetics of biogenic amine metabolism, sclerotization, and melanization in Drosophila melanogaster. Adv Genet 24, 127-222. 
  33. Yu XQ, Jiang H, Wang Y, Kanost MR (2003) Nonproteolytic serine proteinase homologs are involved in prophenoloxidase activation in the tobacco hornworm, Manduca sexta. Insect Mol Biol 33, 197-208.  https://doi.org/10.1016/S0965-1748(02)00191-1
  34. Zhan S, Guo Q, Li M, Li M, Li J, Miao X, et al. (2010) Disruption of an N-acetyltransferase gene in the silkworm reveals a novel role in pigmentation. Development 137, 4083-4090  https://doi.org/10.1242/dev.053678
  35. Zou FM, Lee KS, Kim BY, Kim HJ, Gui ZZ, Zhang GZ, et al. (2015) Differential and spatial regulation of the prophenoloxidase (proPO) and proPO-activating enzyme in cuticular melanization and innate immunity in Bombyx mori pupae. J Asia-Pac Entomol 18, 757-764.  https://doi.org/10.1016/j.aspen.2015.09.007