• Title/Summary/Keyword: immune regulating

Search Result 241, Processing Time 0.026 seconds

Unveiling Immunomodulatory Effects of Euglena gracilis in Immunosuppressed Mice: Transcriptome and Pathway Analysis

  • Seon Ha Jo;Kyeong Ah Jo;Soo-yeon Park;Ji Yeon Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.880-890
    • /
    • 2024
  • The immunomodulatory effects of Euglena gracilis (Euglena) and its bioactive component, β-1,3-glucan (paramylon), have been clarified through various studies. However, the detailed mechanisms of the immune regulation remain to be elucidated. This study was designed not only to investigate the immunomodulatory effects but also to determine the genetic mechanisms of Euglena and β-glucan in cyclophosphamide (CCP)-induced immunosuppressed mice. The animals were orally administered saline, Euglena (800 mg/kg B.W.) or β-glucan (400 mg/kg B.W.) for 19 days, and CCP (80 mg/kg B.W.) was subsequently administered to induce immunosuppression in the mice. The mice exhibited significant decreases in body weight, organ weight, and the spleen index. However, there were significant improvements in the spleen weight and the spleen index in CCP-induced mice after the oral administration of Euglena and β-glucan. Transcriptome analysis of the splenocytes revealed immune-related differentially expressed genes (DEGs) regulated in the Euglena- and β-glucantreated groups. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicated that pathways related with interleukin (IL)-17 and cAMP play significant roles in regulating T cells, B cells, and inflammatory cytokines. Additionally, Ptgs2, a major inflammatory factor, was exclusively expressed in the Euglena-treated group, suggesting that Euglena's beneficial components, such as carotenoids, could regulate these genes by influencing immune lymphocytes and inflammatory cytokines in CCP-induced mice. This study validated the immunomodulatory effects of Euglena and highlighted its underlying mechanisms, suggesting a positive contribution to the determination of phenotypes associated with immune-related diseases and the research and development of immunotherapies.

Falcarindiol from Angelica koreana Down-regulated IL-8 and Up-regulated IL-10 in Colon Epithelial Cells

  • Shim, Sun-Yup;Lee, Seul-gi;Kim, Mihye;Lee, Jin Woo;Hwang, Bang Yeon;Lee, Mina
    • Natural Product Sciences
    • /
    • v.23 no.2
    • /
    • pp.103-107
    • /
    • 2017
  • Angelica koreana is an important medicinal plant for some locals in East Asia including Korea. A few reports have shown the efficacy of its phytochemical constituents. We have isolated and purified one compound falcarindiol (FAL) from the methanolic extract of A. koreana roots. At concentrations from to $1{\mu}M$ to $25{\mu}M$, the FAL isolated from the roots of A. koreana exerted no significant cytotoxicity and down-regulated LPS-stimulated pro-inflammatory cytokine IL-8 in colon epithelial cells, while up-regulating anti-inflammatory cytokine IL-10. In addition, the FAL decreased the expression of LPS-induced inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 protein by Western blot analysis. Colon epithelial cells play pivotal roles in regulating the colon immune system and thus FAL is expected to be candidate agent as therapeutic potential for the treatment of inflammatory bowel disease (IBD) by modulating LPS-induced inflammation in colon epithelial cells.

Anti-tumor and Chemoprotective Effect of Bauhinia tomentosa by Regulating Growth Factors and Inflammatory Mediators

  • Kannan, Narayanan;Sakthivel, Kunnathur Murugesan;Guruvayoorappan, Chandrasekaran
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.18
    • /
    • pp.8119-8126
    • /
    • 2016
  • Cancer is a leading cause of death worldwide. Due to the toxic side effects of the commonly used chemotherapeutic drug cyclophosphamide (CTX), the use of herbal medicines with fewer side effects but having potential use as inducing anti-cancer outcomes in situ has become increasingly popular. The present study sought to investigate the effects of a methanolic extract of Bauhinia tomentosa against Dalton's ascites lymphoma (DAL) induced ascites as well as solid tumors in BALB/c mice. Specifically, B. tomentosa extract was administered intraperitonealy (IP) at 10 mg/kg. BW body weight starting just after tumor cell implantation and thereafter for 10 consecutive days. In the ascites tumor model hosts, administration of extract resulted in a 52% increase in the life span. In solid tumor models, co-administration of extract and CTX significantly reduced tumor volume (relative to in untreated hosts) by 73% compared to just by 52% when the extract alone was provided. Co-administration of the extract also mitigated CTX-induced toxicity, including decreases in WBC count, and in bone marrow cellularity and ${\alpha}$-esterase activity. Extract treatment also attenuated any increases in serum levels of $TNF{\alpha}$, iNOS, IL-$1{\beta}$, IL-6, GM-CSF, and VEGF seen in tumor-bearing hosts. This study confirmed that, the potent antitumor activity of B.tomentosa extract may be associated with immune modulatory effects by regulating anti-oxidants and cytokine levels.

Metformin Suppresses MHC-Restricted Antigen Presentation by Inhibiting Co-Stimulatory Factors and MHC Molecules in APCs

  • Shin, Seulmee;Hyun, Bobae;Lee, Aeri;Kong, Hyunseok;Han, Shinha;Lee, Chong-Kil;Ha, Nam-Joo;Kim, Kyungjae
    • Biomolecules & Therapeutics
    • /
    • v.21 no.1
    • /
    • pp.35-41
    • /
    • 2013
  • Metformin is widely used for T2D therapy but its cellular mechanism of action is undefined. Recent studies on the mechanism of metformin in T2D have demonstrated involvement of the immune system. Current immunotherapies focus on the potential of immunomodulatory strategies for the treatment of T2D. In this study, we examined the effects of metformin on the antigen-presenting function of antigen-presenting cells (APCs). Metformin decreased both MHC class I and class II-restricted presentation of OVA and suppressed the expression of both MHC molecules and co-stimulatory factors such as CD54, CD80, and CD86 in DCs, but did not affect the phagocytic activity toward exogenous OVA. The class II-restricted OVA presentation-regulating activity of metformin was also confirmed using mice that had been injected with metformin followed by soluble OVA. These results provide an understanding of the mechanisms of the T cell response-regulating activity of metformin through the inhibition of MHC-restricted antigen presentation in relation to its actions on APCs.

Metabolites of Kimchi Lactic Acid Bacteria, Indole-3-Lactic Acid, Phenyllactic Acid, and Leucic Acid, Inhibit Obesity-Related Inflammation in Human Mesenchymal Stem Cells

  • Moeun Lee;Daun Kim;Ji Yoon Chang
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.306-313
    • /
    • 2024
  • Given the diversity of vegetables utilized in food fermentation and various lactic acid bacteria (LAB) populations in these materials, comprehensive studies on LAB from vegetable foods, including kimchi, are imperative. Therefore, this study aimed to investigate the obesity-related inflammation response of three metabolites-phenyllactic acid (PLA), indole-3-lactic acid (ILA), and leucic acid (LA)-produced by LAB (Companilactobacillus allii WiKim39 and Lactococcus lactis WiKim0124) isolated from kimchi. Their effects on tumor necrosis factor-α-induced changes in adipokines and inflammatory response in adipose-derived human mesenchymal stem cells were examined. The study results showed that PLA, ILA, and LA, particularly PLA, effectively reduced lipid accumulation and triglyceride, glycerol, free fatty acid, and adiponectin levels. Furthermore, the identified metabolites were found to modulate the expression of signaling proteins involved in adipogenesis and inflammation. Specifically, these metabolites were associated with enriched expression in the chemokine signaling pathway and cytokine-cytokine receptor interaction, which are critical pathways involved in regulating immune responses and inflammation. PLA, ILA, and LA also suppressed the secretion of pro-inflammatory cytokines and several inflammatory markers, with the PLA-treated group exhibiting the lowest levels. These results suggest that PLA, ILA, and LA are potential therapeutic agents for treating obesity and inflammation by regulating adipokine secretion and suppressing pro-inflammatory cytokine production.

Anti-migration Effects of the Daesiho-tang (Da Chai Hu-Tang) Water Extract in Cancer Cells by Regulating Macrophage Polarization (대식세포 분화 조절을 통한 대시호탕의 암세포 전이 억제 효과)

  • Jae-Hoon Jeong;Shin-Hyung Park
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.38 no.1
    • /
    • pp.32-37
    • /
    • 2024
  • The aim of this study was to investigate the role of Daesiho-tang (Da Chai Hu-Tang) water extract (DSTE) in regulating chronic stress-induced cancer progression, focusing on its activity in modulating tumor-associated macrophages (TAMs). Different stimuli can polarize TAMs into immune-stimulating M1 macrophages or immunosuppressive M2 macrophages. During cancer progression, M2 phenotype increases and supports tumor growth, angiogenesis and metastasis. Notably, chronic stress-induced catecholamines promote M2 macrophage polarization. In this study, we investigated whether DSTE regulates norepinephrine (NE)-induced M2 macrophage polarization in RAW 264.7 mouse macrophage cells. Even though NE itself did not increase the expression of M2 markers, the conditioned media of NE-treated 4T1 mouse breast cancer cells (NE CM) significantly up-regulated M2 markers in RAW 264.7 cells, suggesting that NE-regulated cancer cell secretome stimulated M2 polarization. However, such increase was abrogated by DSTE. NE CM also induced phosphorylation of signal transducer and activator of transcription 6 (STAT6) in RAW 264.7 cells, which was clearly reversed by pretreatment with DSTE, demonstrating that DSTE inhibited M2 polarization by inactivating STAT6. Finally, M2-polarized RAW264.7 cells by NE CM markedly increased the migration of 4T1 cells. However, such increase was completely reversed by co-treating RAW264.7 cells with NE CM and DSTE, indicating that DSTE attenuated cancer cell migration by blocking M2 polarization. Taken together, our results suggest a probable use of DSTE for cancer patients under chronic stress by regulating M2 macrophage polarization.

The role of RNA epigenetic modification-related genes in the immune response of cattle to mastitis induced by Staphylococcus aureus

  • Yue Xing;Yongjie Tang;Quanzhen Chen;Siqian Chen;Wenlong Li;Siyuan Mi;Ying Yu
    • Animal Bioscience
    • /
    • v.37 no.7
    • /
    • pp.1141-1155
    • /
    • 2024
  • Objective: RNA epigenetic modifications play an important role in regulating immune response of mammals. Bovine mastitis induced by Staphylococcus aureus (S. aureus) is a threat to the health of dairy cattle. There are numerous RNA modifications, and how these modification-associated enzymes systematically coordinate their immunomodulatory effects during bovine mastitis is not well reported. Therefore, the role of common RNA modification-related genes (RMRGs) in bovine S. aureus mastitis was investigated in this study. Methods: In total, 80 RMRGs were selected for this study. Four public RNA-seq data sets about bovine S. aureus mastitis were collected and one additional RNA-seq data set was generated by this study. Firstly, quantitative trait locus (QTL) database, transcriptome-wide association studies (TWAS) database and differential expression analyses were employed to characterize the potential functions of selected enzyme genes in bovine S. aureus mastitis. Correlation analysis and weighted gene co-expression network analysis (WGCNA) were used to further investigate the relationships of RMRGs from different types at the mRNA expression level. Interference experiments targeting the m6 A demethylase FTO and utilizing public MeRIP-seq dataset from bovine Mac-T cells were used to investigate the potential interaction mechanisms among various RNA modifications. Results: Bovine QTL and TWAS database in cattle revealed associations between RMRGs and immune-related complex traits. S. aureus challenged and control groups were effectively distinguished by principal component analysis based on the expression of selected RMRGs. WGCNA and correlation analysis identified modules grouping different RMRGs, with highly correlated mRNA expression. The m6 A modification gene FTO showed significant effects on the expression of m6 A and other RMRGs (such as NSUN2, CPSF2, and METTLE), indicating complex co-expression relationships among different RNA modifications in the regulation of bovine S. aureus mastitis. Conclusion: RNA epigenetic modification genes play important immunoregulatory roles in bovine S. aureus mastitis, and there are extensive interactions of mRNA expression among different RMRGs. It is necessary to investigate the interactions between RNA modification genes regulating complex traits in the future.

Changes in Caenorhabditis elegans Exposed to Vibrio parahaemolyticus

  • Durai, Sellegounder;Pandian, Shunmugiah Karutha;Balamurugan, Krishnaswamy
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.10
    • /
    • pp.1026-1035
    • /
    • 2011
  • Vibrio parahaemolyticus, which owes its origin to the marine environment, is considered as one of the most common causes of infectious diarrhea worldwide. The present study investigated the pathogenicity of V. parahaemolyticus against the model organism, Caenorhabditis elegans. Infection in the host was localized with GFP-tagged V. parahaemolyticus using confocal laser scanning microscopy. The times required for causing infection, bacterial load in intestine, chemotactic response, and alteration in pharyngeal pumping were analyzed in the host system. In addition, the regulation of innate immune-related genes, lys-7, clec- 60, and clec-87, was analyzed using real-time PCR. The role of immune-responsible pmk-1 was studied using mutant strains. The pathogenicity of environmental strain CM2 isolated from the Gulf of Mannar, India was compared with that of a reference strain obtained from ATCC. The pathogen infected animals appeared to ward off infection by up-regulating candidate antimicrobial genes for a few hours after the exposure, before succumbing to the pathogen. For the first time, the pathogenicity of V. parahaemolyticus at both the physiological and molecular levels has been studied in detail using the model organism C. elegans.

Effect of Zingiber officinale and Hizikia fusiforme Water Extracts on NO Production in Macrophage of Mice (생강과 톳 추출물이 마우스의 대식 세포에서 Nitric Oxide(NO) 생성에 미치는 영향)

  • Ryu, Hye-Sook;Kim, Hyun-Sook
    • The Korean Journal of Food And Nutrition
    • /
    • v.19 no.3
    • /
    • pp.327-331
    • /
    • 2006
  • Zingiber officinale and Hizikia fusiforme(sea weed fusiforme) have long been used for food sources in Korea. The present study was performed to investigate the ex vivo effect of Zingiber officinale and Hizikia fusiforme on NO production in macrophage of mice. Seven to eight week old mices(Balb/c) were fed chew diet ad libitum and water extract of Zingiber officinale and Hizikia fusiforme was administrated orally at two different concentrations (50 and 500 mg/kg B.W.). every other day for two or four weeks NO(nitric oxide) production by activated macrophage was assessed by measuring nitrite, the stable NO metabolite, using Griess reaction assay. NO production were significantly enhanced in Zingiber officinale group at 500 mg/kg B.W. and in Hizikia fusiforme group at 50 mg/kg B.W. compared to the coresponding control groups. In conclusion, this study may suggest that Zingiber officinale and Hizikia fusiforme(sea weed fusiforme) extracts enhance the immune function by regulating NO production in macrophages of mice.

Effects of Water Extract Acorn on Mouse Immune Cell Activation Ex Vivo (도토리 추출물의 경구 투여가 마우스 면역 세포 활성에 미치는 효과)

  • Ryu, Hye-Sook
    • The Korean Journal of Food And Nutrition
    • /
    • v.23 no.2
    • /
    • pp.135-140
    • /
    • 2010
  • Acorns have been used as a traditional remed as well as food source. However, few studies on their immunomodulating effects have been reported. In this study, the combined immunomodulative effect of a water extract of acorns was tested on seven to eight weeks old mice(balb/c). The mice were fed ad libitum on a chow diet, and a water extract of the plant mixture was orally administered every other day for four weeks at two different concentrations(50 and 500 mg/kg B.W.). The production of cytokine(IL-$1{\beta}$, IL-6, IL-2, IL-10, IFN-$\gamma$), secreted by macrophages stimulated with LPS or not, detected by ELISA assay using cytokine kit. After 48 h of incubation with mitogen(ConA or LPS) ex vivo study showed that cytokine (IL-$1{\beta}$, IL-6, IL-2, IL-10, IFN-$\gamma$) was detected in both of the 50 and 500 mg/kg B.W. supplementation groups with LPS stimulation. The results of this study may suggest that supplementation with acorn water extract increase immune function by regulating cytokine production capacity by activated macrophages.