• 제목/요약/키워드: immune regulating

검색결과 221건 처리시간 0.023초

Regulatory Effects of Gamisamul-tang on Atopic Dermatitis Induced in the NC/Nga Mice

  • Yang, Sun-Sim;NamGung, Uk;Kim, Dong-Hee
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • 제20권4호
    • /
    • pp.1036-1043
    • /
    • 2006
  • The present study was conducted to investigate the effect of Gamisamul-tang (GSMT) on atopic dermatitis (AD). AD was induced in NC/Nga mutant mice by DNCB treatment. GSMT administration reduced levels of skin severity scores. Serum levels of IgE, IgG, IgM, and inflammatory cytokines including IL-4, IL-4 and 1L-13 were significantly decreased by GSMT treatment. Levels of mRNA's encoding IL-4, IL-6, IL-13, $TNF-{\alpha}$, and $interferon-{\gamma}$ in the dermal tissue and draining lymph node (DLN) by real time RT-PCR analysis showed decrease by GSMT testament. Moreover, the number of CD4+ and CD8+ cells was significantly decreased in the spleen and DLN tissues. Histological examination showed that infiltration levels of immune cells in ear, skin, and DLN of AD-induced NC/Nga mice were much improved by GSMT treatment. The present data suggest that GSMT may play an important role in recovering AD symptoms by regulating immune reactivity.

Synaptotagmin 5 Controls SYP132-VAMP721/722 Interaction for Arabidopsis Immunity to Pseudomonas syringae pv tomato DC3000

  • Kim, Soohong;Kim, Hyeran;Park, Keunchun;Cho, Da Jeong;Kim, Mi Kyung;Kwon, Chian;Yun, Hye Sup
    • Molecules and Cells
    • /
    • 제44권9호
    • /
    • pp.670-679
    • /
    • 2021
  • Vesicle-associated membrane proteins 721 and 722 (VAMP721/722) are secretory vesicle-localized arginine-conserved soluble N-ethylmaleimide-sensitive factor attachment protein receptors (R-SNAREs) to drive exocytosis in plants. They are involved in diverse physiological processes in plants by interacting with distinct plasma membrane (PM) syntaxins. Here, we show that synaptotagmin 5 (SYT5) is involved in plant defense against Pseudomonas syringae pv tomato (Pst) DC3000 by regulating SYP132-VAMP721/722 interactions. Calcium-dependent stimulation of in vitro SYP132-VAMP722 interaction by SYT5 and reduced in vivo SYP132-VAMP721/722 interaction in syt5 plants suggest that SYT5 regulates the interaction between SYP132 and VAMP721/722. We interestingly found that disease resistance to Pst DC3000 bacterium but not to Erysiphe pisi fungus is compromised in syt5 plants. Since SYP132 plays an immune function to bacteria, elevated growth of surface-inoculated Pst DC3000 in VAMP721/722-deficient plants suggests that SYT5 contributes to plant immunity to Pst DC3000 by promoting the SYP132-VAMP721/722 immune secretory pathway.

Novel miR-1958 Promotes Mycobacterium tuberculosis Survival in RAW264.7 Cells by Inhibiting Autophagy Via Atg5

  • Ding, Shuqin;Qu, Yuliang;Yang, Shaoqi;Zhao, Ya'e;Xu, Guangxian
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권6호
    • /
    • pp.989-998
    • /
    • 2019
  • Autophagy is crucial for immune defense against Mycobacterium tuberculosis (Mtb) infection. Mtb can evade host immune attack and survival within macrophages by manipulating the autophagic process. MicroRNAs (miRNAs) are small, non-coding RNAs that are involved in regulating vital genes during Mtb infection. The precise role of miRNAs in autophagy with the exits of Mtb remains largely unknown. In this study, we found miR-1958, a new miRNA that could regulate autophagy by interacting with 3'UTR of autophagy-related gene 5 (Atg5). In addition, Mtb infection triggered miR-1958 expression in RAW264.7 cells. What's more, miR-1958 overexpression blocked autophagic flux by impairing the fusion of autophagosomes and lysosomes. Overexpression of miR-1958 reduced Atg5 expression and LC3 puncta while inhibition of miR-1958 brought an increase of Atg5 and LC3 puncta; the opposite results were observed in detection of p62. The survival of Mtb in RAW264.7 cells transfected with mimic of miR-1958 was enhanced. Taken together, our research demonstrated that a novel miR-1958 could inhibit autophagy by interacting with Atg5 and favored intracellular Mtb survival in RAW264.7 cells.

Effect of Nelumbo nucifera Gaertn Water Extracts on Mouse Spleen and Cytokine Cells Activation (연근 열수추출물 투여가 마우스의 비장세포와 사이토카인의 분비량에 미치는 영향)

  • Ryu, Hye-Sook
    • The Korean Journal of Food And Nutrition
    • /
    • 제32권3호
    • /
    • pp.246-250
    • /
    • 2019
  • Nelumbo nucifera Gaertn has been usedas a traditional remedy and food source in South Korea. It promotes gastrointestinal function and controls blood pressures. Nelumbo nucifera Gaertn water extracts supplement at 5, 10, 50, 100, 250, 500, $1,000{\mu}g/mL$ after a 48 h pre-treatment with the mitogen (ConA or LPS) increased the mouse splenocytes proliferation. Water extract supplement also increased the cytokine production ($IL-1{\beta}$, $TNF-{\alpha}$ and $IFN-{\gamma}$), measured by a cytokine ELISA kit. For the result of in vitro study, the proliferation of splenocytes and cytokine production activated by peritoneal macrophages increased when water extracts were supplemented in the range of $50{\sim}500{\mu}L/mL$ concentration. Specifically, the levels of the splenocytes proliferation, $IL-1{\beta}$, $TNF-{\alpha}$ and $IFN-{\gamma}$ were the highest at $250{\mu}L/mL$ concentration. This in vitro study suggestedthat supplementation with Nelumbo nucifera Gaertn water extracts may enhance the immune function by regulating the splenocyte proliferation and enhancing the cytokine production activating macrophage in vitro.

Emerging role of Hippo pathway in the regulation of hematopoiesis

  • Inyoung Kim;Taeho Park;Ji-Yoon Noh;Wantae Kim
    • BMB Reports
    • /
    • 제56권8호
    • /
    • pp.417-425
    • /
    • 2023
  • In various organisms, the Hippo signaling pathway has been identified as a master regulator of organ size determination and tissue homeostasis. The Hippo signaling coordinates embryonic development, tissue regeneration and differentiation, through regulating cell proliferation and survival. The YAP and TAZ (YAP/TAZ) act as core transducers of the Hippo pathway, and they are tightly and exquisitely regulated in response to various intrinsic and extrinsic stimuli. Abnormal regulation or genetic variation of the Hippo pathway causes a wide range of human diseases, including cancer. Recent studies have revealed that Hippo signaling plays a pivotal role in the immune system and cancer immunity. Due to pathophysiological importance, the emerging role of Hippo signaling in blood cell differentiation, known as hematopoiesis, is receiving much attention. A number of elegant studies using a genetically engineered mouse (GEM) model have shed light on the mechanistic and physiological insights into the Hippo pathway in the regulation of hematopoiesis. Here, we briefly review the function of Hippo signaling in the regulation of hematopoiesis and immune cell differentiation.

A Review of the Relationship between the Theory of 'Pizhuweiwei(脾主爲衛)' and Intestinal Flora ('비주위위(脾主爲衛)'와 장내(腸內) 세균총(細菌叢)의 상관성(相關性)에 대한 고찰(考察))

  • Sook-Ei Jeong;Bumjung Kim
    • Journal of Korean Medical classics
    • /
    • 제37권1호
    • /
    • pp.25-39
    • /
    • 2024
  • Objectives : This paper focuses on recent research related to the relationship between 'Pizhuweiwei(脾主爲衛)' and intestinal flora, and suggests Korean Medical treatment methods that can treat and prevent diseases related to Spleen Deficiency(脾虛) such as ulcerative colitis, atrophic gastritis, diabetes, and obesity that is prevalent today. Methods : This study summarizes recent research results based on various literature on the relationship between the spleen and intestinal flora. Results : Polysaccharides contained in Jianpi herbs(健脾藥) have the effect of increasing beneficial bacteria and maintaining the diversity of intestinal microorganisms to improve intestinal function, managing intestinal metabolites to improve the body's immune function, and regulating the intestinal immune defense system. Therefore, based on the theory of 'Pizhuweiwei(脾主爲衛)', if the symptoms are treated through the spleen with Spleen-strengthening herbal medicinals, it could provide a substantial starting point for improving immunity. Conclusions : Polysaccharides contained in Jianpi herbs(健脾藥) could be considered as potential probiotics based on research findings which show that polysaccharides can regulate the intestinal flora and strengthen weak spleen, playing an important role.

Effect of Euonymus alatus and Ulmus clavidiana var japonica on the immune system (화살나무 및 느릅나무 추출물이 면역계세포의 활성에 미치는 영향)

  • Kim, Jong-myeon;Choi, Min-soon;Cho, Jeong-gon;Jung, Young-mee;Park, Tae-wook
    • Korean Journal of Veterinary Research
    • /
    • 제34권2호
    • /
    • pp.307-313
    • /
    • 1994
  • We have previously shown that crude water extract of Euonymus alatus (EA) had strong prophylactic effect against chemically induced-and tumor cell implanted-cancer, and that the mechanisms responsible for its antitumor effects were due to nonspecific enhancement of the NK cell activities and the cell mediated immunity. However, it was unknown that any components of crude extract did work so, since it consisted of several components. In this paper, we fractionated the crude watar EA-extract into several fraction such as hexane-, ethylether-, ethyl acetate-, n-butanol- and water soluble-fraction, and screened the immune regulating activities of each fraction by the evaluation of lymphokine production and activated lymphocyte proliferation. As a result of the component fraction of EA-extract, it was found that n-butanol fraction was a potent immunostimulator, and the remained water soluble fraction also contained some stimulator, But, other fraction did not showed any remarkable effect. It is therefore suggested that EA-glycosides in n-butanol fraction may be new one of the potent biological response modifiers. The present study was also undertaken in an efforts to investigate the effects of elm-bark(EB, Ulmus clavidiana var japonica), which has been used for curing ulcer and inflammation as a folk medicine without any kind of experimental evidence to support this, on the cellular- and humoral-immune responses, lymphocyte function and NK cell activities in mice. Regardless of time and duration of EB-treatment, Arthus reaction and antibody response to SRBC were not modified by EB, but delayed hypersensitivity to SRBC was significantly enhanced only when EB was treated prior to SRBC-sensitization. EB slightly inhibited the proliferation responses of splenocytes to PHA-stimulation, but it significantly augmented the responses of these cells to S aureus Cowan 1 and Con A-activation, and these effects were manifested only when EB was added at culture initiation. EB did not influence Ig secretion of spleen cells but it significantly augmented the Con A-induced 1L 2 and MIF production of splenocytes. NK cell activities of splenocytes were markedly riled when effector cells were pretreated with EB and this augmentation was dine to the increase of binding affinity of effector cells to target cells and the target cell lytic activities of effector cells. These results led to the conclusion that EB triggers increase of cellular immune responses, such as delayed hypersensitivitiy, lymphokine production and NK cell activities. Also these results suggested that EB contains potent immune stimulants, which may provide the rational basis for their therapeutic use as one of the new biological response modifiers.

  • PDF

Allithiamine Exerts Therapeutic Effects on Sepsis by Modulating Metabolic Flux during Dendritic Cell Activation

  • Choi, Eun Jung;Jeon, Chang Hyun;Park, Dong Ho;Kwon, Tae-Hwan
    • Molecules and Cells
    • /
    • 제43권11호
    • /
    • pp.964-973
    • /
    • 2020
  • Recent studies have highlighted that early enhancement of the glycolytic pathway is a mode of maintaining the proinflammatory status of immune cells. Thiamine, a wellknown co-activator of pyruvate dehydrogenase complex, a gatekeeping enzyme, shifts energy utilization of glucose from glycolysis to oxidative phosphorylation. Thus, we hypothesized that thiamine may modulate inflammation by alleviating metabolic shifts during immune cell activation. First, using allithiamine, which showed the most potent anti-inflammatory capacity among thiamine derivatives, we confirmed the inhibitory effects of allithiamine on the lipopolysaccharide (LPS)-induced pro-inflammatory cytokine production and maturation process in dendritic cells. We applied the LPS-induced sepsis model to examine whether allithiamine has a protective role in hyper-inflammatory status. We observed that allithiamine attenuated tissue damage and organ dysfunction during endotoxemia, even when the treatment was given after the early cytokine release. We assessed the changes in glucose metabolites during LPS-induced dendritic cell activation and found that allithiamine significantly inhibited glucose-driven citrate accumulation. We then examined the clinical implication of regulating metabolites during sepsis by performing a tail bleeding assay upon allithiamine treatment, which expands its capacity to hamper the coagulation process. Finally, we confirmed that the role of allithiamine in metabolic regulation is critical in exerting anti-inflammatory action by demonstrating its inhibitory effect upon mitochondrial citrate transporter activity. In conclusion, thiamine could be used as an alternative approach for controlling the immune response in patients with sepsis.

Conjugated Linoleic Acid as a Key Regulator of Performance, Lipid Metabolism, Development, Stress and Immune Functions, and Gene Expression in Chickens

  • Choi, Yang-Ho
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제22권3호
    • /
    • pp.448-458
    • /
    • 2009
  • It has been well documented from animal and human studies that conjugated linoleic acid (CLA) has numerous beneficial effects on health. In chickens, CLA exerts many effects on performance ranging from egg quality and yolk lipids to meat quality. Although there are several CLA isomers available, not all CLA isomers have the same incorporation rates into egg yolk: cis-9,trans-11 and trans-10,cis-12 CLA isomers are more favorably deposited into egg yolk than other isomers investigated, but of the two isomers, the former has a higher incorporation rate than the latter. CLA alters the amounts and profiles of lipids in plasma, muscles and liver. Furthermore, increased liver weight was reported in chickens fed dietary CLA. As observed in egg yolk, marked reduction in intramuscular lipids as well as increased protein content was observed in different studies, leading to elevation in protein-to-fat ratio. Inconsistency exists for parameters such as body weight gain, feed intake, feed conversion ratio, egg production rate and mortality, depending upon experimental conditions. One setback is that hard-cooked yolks from CLA-consuming hens have higher firmness as refrigeration time and CLA are increased, perhaps owing to alterations in physico-chemistry of yolk. Another is that CLA can be detrimental to hatchability when provided to breeders: eggs from these breeders have impaired development in embryonic and neonatal stages, and have increased and decreased amounts of saturated fatty acids and monounsaturated fatty acids (MUFAs), respectively. Thus, both problems can be fully resolved if dietary sources rich in MUFAs are provided together with CLA. Emerging evidence suggests that CLA exerts a critical impact on stress and immune functions as it can completely nullify some of the adverse effects produced by immune challenges and reduce mortality in a dose-dependent manner. Finally, CLA is a key regulator of genes that may be responsible for lipid metabolism in chickens. CLA down-regulates both expression of the gene encoding stearoyl-CoA desaturase-1 and its protein activity in the chicken liver while up-regulating mRNA of sterol regulatory element-binding protein-l.

Molecular Characterization and Expression Analysis of Interferon Regulatory Factor 8 (IRF8) in the Black Rockfish Sebastes schlegelii (조피볼락(Sebastes schlegelii) Interferon Regulatory Factor 8 (IRF8)의 분자유전학적 특성 및 발현 분석)

  • Yang, Hyerim;Kwon, Hyukjae;Lee, Seongdo;Bathige, S.D.N.K;Kim, Myoung-Jin;Lee, Jehee
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • 제50권3호
    • /
    • pp.302-310
    • /
    • 2017
  • Interferon regulatory factor 8 (IRF8) is essential for the development of B and T cells, as well as for the activity of dendritic cells and macrophages. We performed molecular characterization of IRF8 from rock fish, Sebastes schlegelii (Ss), and investigated the spatial and temporal profile of mRNA expression after challenge with lipopolysaccharide (LPS), polyinosinic:polycytidylic acid (poly I:C), or Streptococcus iniae. The full-length cDNA sequence of SsIRF8 was 1,657 bp, containing an ORF of 1,266 bp. The gene had a predicted molecular mass of 47.7 kDa and an isoelectric point of 5.99. The amino acid sequence coded by this gene showed the highest degree of identity (90.8%) and similarity (96.2%) with IRF8 from Oplegnathus fasciatus. The SsIRF8 mRNA was expressed ubiquitously, at varying levels, with the highest level of expression observed in the spleen. To confirm the role of SsIRF8 in mediating the immune response, we measured SsIRF8 mRNA expression in the splenic tissue at different time points after injection with LPS, poly I:C, or S. iniae. The qRT-PCR results showed that SsIRF8 mRNA expression in the poly I:C-injected group was highly upregulated 6 hr after exposure (P<0.05). Expression of SsIRF8 mRNA in the S. iniae-injected group peaked at 24 hr. These results suggest that SsIRF8 might be important in regulating the strength of the rockfish immune response to immunostimulatory agents.