DOI QR코드

DOI QR Code

Changes in Caenorhabditis elegans Exposed to Vibrio parahaemolyticus

  • Received : 2011.02.07
  • Accepted : 2011.06.23
  • Published : 2011.10.28

Abstract

Vibrio parahaemolyticus, which owes its origin to the marine environment, is considered as one of the most common causes of infectious diarrhea worldwide. The present study investigated the pathogenicity of V. parahaemolyticus against the model organism, Caenorhabditis elegans. Infection in the host was localized with GFP-tagged V. parahaemolyticus using confocal laser scanning microscopy. The times required for causing infection, bacterial load in intestine, chemotactic response, and alteration in pharyngeal pumping were analyzed in the host system. In addition, the regulation of innate immune-related genes, lys-7, clec- 60, and clec-87, was analyzed using real-time PCR. The role of immune-responsible pmk-1 was studied using mutant strains. The pathogenicity of environmental strain CM2 isolated from the Gulf of Mannar, India was compared with that of a reference strain obtained from ATCC. The pathogen infected animals appeared to ward off infection by up-regulating candidate antimicrobial genes for a few hours after the exposure, before succumbing to the pathogen. For the first time, the pathogenicity of V. parahaemolyticus at both the physiological and molecular levels has been studied in detail using the model organism C. elegans.

Keywords

References

  1. Abada, E. A., H. Sung, M. Dwivedi, B. J. Park, S. K. Lee, and J. Ahnn. 2009. C. elegans behavior of preference choice on bacterial food. Mol. Cells 28: 209-213. https://doi.org/10.1007/s10059-009-0124-x
  2. Aballay, A., P. Yorgey, and F. M. Ausubel. 2000. Salmonella typhimurium proliferates and establishes a persistent infection in the intestine of Caenorhabditis elegans. Curr. Biol. 10: 1539-1542. https://doi.org/10.1016/S0960-9822(00)00830-7
  3. Akira, S. 2009. Pathogen recognition by innate immunity and its signaling. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 85: 143-156. https://doi.org/10.2183/pjab.85.143
  4. Ansaruzzaman, M., M. Lucas, J. L. Deen, N. A. Bhuiyan, X. Y. Wang, A. Safa, et al. 2005. Pandemic serovars (o3:K6 and o4:K68) of Vibrio parahaemolyticus associated with diarrhea in mozambique: Spread of the pandemic into the African continent. J. Clin. Microbiol. 43: 2559-2562. https://doi.org/10.1128/JCM.43.6.2559-2562.2005
  5. Bhoopong, P., P. Palittapongarnpim, R. Pomwised, A. Kiatkittipong, M. Kamruzzaman, Y. Nakaguchi, et al. 2007. Variability of properties of Vibrio parahaemolyticus strains isolated from individual patients. J. Clin Microbiol. 45: 1544-1550. https://doi.org/10.1128/JCM.02371-06
  6. Brenner, S. 1974. The genetics of Caenorhabditis elegans. Genetics 77: 71-94.
  7. Cambi, A., M. Koopman, and C. G. Figdor. 2005. How c-type lectins detect pathogens. Cell Microbiol. 7: 481-488. https://doi.org/10.1111/j.1462-5822.2005.00506.x
  8. Casadevall, A. and L. A. Pirofski. 2000. Host-pathogen interactions: Basic concepts of microbial commensalism, colonization, infection, and disease. Infect. Immun. 68: 6511-6518. https://doi.org/10.1128/IAI.68.12.6511-6518.2000
  9. Cinar, H. N., M. Kothary, A. R. Datta, B. D. Tall, R. Sprando, K. Bilecen, et al. 2010. Vibrio cholerae hemolysin is required for lethality, developmental delay, and intestinal vacuolation in Caenorhabditis elegans. PLoS One 5: e11558. https://doi.org/10.1371/journal.pone.0011558
  10. Dhakal, B. K., W. Lee, Y. R. Kim, H. E. Choy, J. Ahnn, and J. H. Rhee. 2006. Caenorhabditis elegans as a simple model host for Vibrio vulnificus infection. Biochem. Biophys. Res. Commun. 346: 751-757. https://doi.org/10.1016/j.bbrc.2006.05.168
  11. Dodd, R. B. and K. Drickamer. 2001. Lectin-like proteins in model organisms: Implications for evolution of carbohydrate-binding activity. Glycobiology 11: 71R-79R. https://doi.org/10.1093/glycob/11.5.71R
  12. Garsin, D. A., C. D. Sifri, E. Mylonakis, X. Qin, K. V. Singh, B. E. Murray, et al. 2001. A simple model host for identifying Gram-positive virulence factors. Proc. Natl. Acad. Sci. USA 98: 10892-10897. https://doi.org/10.1073/pnas.191378698
  13. Gravato-Nobre, M. J. and J. Hodgkin. 2005. Caenorhabditis elegans as a model for innate immunity to pathogens. Cell Microbiol. 7: 741-751. https://doi.org/10.1111/j.1462-5822.2005.00523.x
  14. Iwanaga, S. and B. L. Lee. 2005. Recent advances in the innate immunity of invertebrate animals. J. Biochem. Mol. Biol. 38: 128-150. https://doi.org/10.5483/BMBRep.2005.38.2.128
  15. Kim, D. H. and F. M. Ausubel. 2005. Evolutionary perspectives on innate immunity from the study of Caenorhabditis elegans. Curr. Opin. Immunol. 17: 4-10. https://doi.org/10.1016/j.coi.2004.11.007
  16. Kim, D. H., R. Feinbaum, G. Alloing, F. E. Emerson, D. A. Garsin, H. Inoue, et al. 2002. A conserved p38 MAP Kinase pathway in Caenorhabditis elegans innate immunity. Science 297: 623-626. https://doi.org/10.1126/science.1073759
  17. Kishishita, M., N. Matsuoka, K. Kumagai, S. Yamasaki, Y. Takeda, and M. Nishibuchi. 1992. Sequence variation in the thermostable direct hemolysin-related hemolysin (trh) gene of Vibrio parahaemolyticus. Appl. Environ. Microbiol. 58: 2449-2457.
  18. Kothe, M., M. Antl, B. Huber, K. Stoecker, D. Ebrecht, I. Steinmetz, and L. Eberl. 2003. Killing of Caenorhabditis elegans by Burkholderia cepacia is controlled by the cep quorum-sensing system. Cell Microbiol. 5: 343-351. https://doi.org/10.1046/j.1462-5822.2003.00280.x
  19. Labrousse, A., S. Chauvet, C. Couillault, C. L. Kurz, and J. J. Ewbank. 2000. Caenorhabditis elegans is a model host for Salmonella typhimurium. Curr. Biol. 10: 1543-1545. https://doi.org/10.1016/S0960-9822(00)00833-2
  20. Lynch, T., S. Livingstone, E. Buenaventura, E. Lutter, J. Fedwick, A. G. Buret, et al. 2005. Vibrio parahaemolyticus disruption of epithelial cell tight junctions occurs independently of toxin production. Infect. Immun. 73: 1275-1283. https://doi.org/10.1128/IAI.73.3.1275-1283.2005
  21. Mahajan-Miklos, S., M. W. Tan, L. G. Rahme, and F. M. Ausubel. 1999. Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosa-Caenorhabditis elegans pathogenesis model. Cell 96: 47-56. https://doi.org/10.1016/S0092-8674(00)80958-7
  22. Mallo, G. V., C. L. Kurz, C. Couillault, N. Pujol, S. Granjeaud, Y. Kohara, and J. J. Ewbank. 2002. Inducible antibacterial defense system in C. elegans. Curr. Biol. 12: 1209-1214. https://doi.org/10.1016/S0960-9822(02)00928-4
  23. Matsumoto, C., J. Okuda, M. Ishibashi, M. Iwanaga, P. Garg, T. Rammamurthy, et al. 2000. Pandemic spread of an O3:K6 clone of Vibrio parahaemolyticus and emergence of related strains evidenced by arbitrarily primed PCR and toxRS sequence analyses. J. Clin. Microbiol. 38: 578-585.
  24. Matsuzawa, A., K. Saegusa, T. Noguchi, C. Sadamitsu, H. Nishitoh, S. Nagai, et al. 2005. Ros-dependent activation of the TRAF6-ASK1-p38 pathway is selectively required for TLR4-mediated innate immunity. Nat. Immunol. 6: 587-592. https://doi.org/10.1038/ni1200
  25. Murphy, C. T., S. A. McCarroll, C. I. Bargmann, A. Fraser, R. S. Kamath, J. Ahringer, et al. 2003. Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424: 277-283. https://doi.org/10.1038/nature01789
  26. Mylonakis, E., F. M. Ausubel, J. R. Perfect, J. Heitman, and S. B. Calderwood. 2002. Killing of Caenorhabditis elegans by Cryptococcus neoformans as a model of yeast pathogenesis. Proc. Natl. Acad. Sci. USA 99: 15675-15680. https://doi.org/10.1073/pnas.232568599
  27. Nair, G. B. and J. C. Hormazabal. 2005. The Vibrio parahaemolyticus pandemic. Rev. Chilena Infectol. 22: 125-130.
  28. Nithyanand, P. and S. K. Pandian. 2009. Phylogenetic characterization of culturable bacterial diversity associated with the mucus and tissue of the coral Acropora digitifera from the Gulf of Mannar. FEMS Microbiol. Ecol. 69: 384-394. https://doi.org/10.1111/j.1574-6941.2009.00723.x
  29. O'Quinn, A. L., E. M. Wiegand, and J. A. Jeddeloh. 2001. Burkholderia pseudomallei kills the nematode Caenorhabditis elegans using an endotoxin-mediated paralysis. Cell Microbiol. 3: 381-393. https://doi.org/10.1046/j.1462-5822.2001.00118.x
  30. O'Rourke, D., D. Baban, M. Demidova, R. Mott, and J. Hodgkin. 2006. Genomic clusters, putative pathogen recognition molecules, and antimicrobial genes are induced by infection of C. elegans with M. nematophilum. Genome Res. 16: 1005-1016. https://doi.org/10.1101/gr.50823006
  31. Okuda, J., M. Ishibashi, E. Hayakawa, T. Nishino, Y. Takeda, A. K. Mukhopadhyay, et al. 1997. Emergence of a unique O3:K6 clone of Vibrio parahaemolyticus in Calcutta, India, and isolation of strains from the same clonal group from Southeast Asian travelers arriving in Japan. J. Clin Microbiol. 35: 3150-3155.
  32. Park, K. S., T. Ono, M. Rokuda, M. H. Jang, K. Okada, T. Iida, and T. Honda. 2004. Functional characterization of two type III secretion systems of Vibrio parahaemolyticus. Infect. Immun. 72: 6659-6665. https://doi.org/10.1128/IAI.72.11.6659-6665.2004
  33. Sawabe, T., Y. Fukui, and E. V. Stabb. 2006. Simple conjugation and outgrowth procedures for tagging vibrios with GFP, and factors affecting the stable expression of the gfp tag. Lett. Appl. Microbiol. 43: 514-522. https://doi.org/10.1111/j.1472-765X.2006.01992.x
  34. Shirai, H., H. Ito, T. Hirayama, Y. Nakamoto, N. Nakabayashi, K. Kumagai, et al. 1990. Molecular epidemiologic evidence for association of thermostable direct hemolysin (TDH) and TDH-related hemolysin of Vibrio parahaemolyticus with gastroenteritis. Infect. Immun. 58: 3568-3573.
  35. Schulenburg, H., M. P. Hoeppner, J. 3rd Weiner, and E. Bornberg-Bauer. 2008. Specificity of the innate immune system and diversity of C-type lectin domain (CTLD) proteins in the nematode Caenorhabditis elegans. Immunobiology 213: 237-250. https://doi.org/10.1016/j.imbio.2007.12.004
  36. Sicard, M., S. Hering, R. Schulte, S. Gaudriault, and H. Schulenburg. 2007. The effect of Photorhabdus luminescens (Enterobacteriaceae) on the survival, development, reproduction and behaviour of Caenorhabditis elegans (Nematoda: Rhabditidae). Environ. Microbiol. 9: 12-25. https://doi.org/10.1111/j.1462-2920.2006.01099.x
  37. Sifri, C. D., J. Begun, F. M. Ausubel, and S. B. Calderwood. 2003. Caenorhabditis elegans as a model host for Staphylococcus aureus pathogenesis. Infect. Immun. 71: 2208-2217. https://doi.org/10.1128/IAI.71.4.2208-2217.2003
  38. Tan, M. W., S. Mahajan-Miklos, and F. M. Ausubel. 1999. Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proc. Natl. Acad. Sci. USA 96: 715-720. https://doi.org/10.1073/pnas.96.2.715
  39. Troemel, E. R., S. W. Chu, V. Reinke, S. S. Lee, F. M. Ausubel, and D. H. Kim. 2006. p38 MAPK regulates expression of immune response genes and contributes to longevity in C. elegans. PLoS Genet. 2: e183. https://doi.org/10.1371/journal.pgen.0020183
  40. Vaitkevicius, K., B. Lindmark, G. Ou, T. Song, C. Toma, M. Iwanaga, et al. 2006. A Vibrio cholerae protease needed for killing of Caenorhabditis elegans has a role in protection from natural predator grazing. Proc. Natl. Acad. Sci. USA 103: 9280-9285. https://doi.org/10.1073/pnas.0601754103
  41. Wong, D., D. Bazopoulou, N. Pujol, N. Tavernarakis, and J. J. Ewbank. 2007. Genome-wide investigation reveals pathogen-specific and shared signatures in the response of Caenorhabditis elegans to infection. Genome Biol. 8: R194. https://doi.org/10.1186/gb-2007-8-9-r194
  42. Yeung, P. S. and K. J. Boor. 2004. Epidemiology, pathogenesis, and prevention of foodborne Vibrio parahaemolyticus infections. Foodborne Pathog. Dis. 1: 74-88. https://doi.org/10.1089/153531404323143594

Cited by

  1. Caenorhabditis elegans‐based in vivo screening of bioactives from marine sponge‐associated bacteria against Vibrio alginolyticus vol.115, pp.6, 2013, https://doi.org/10.1111/jam.12335
  2. Antinematode Activity of Violacein and the Role of the Insulin/IGF-1 Pathway in Controlling Violacein Sensitivity in Caenorhabditis elegans vol.9, pp.10, 2011, https://doi.org/10.1371/journal.pone.0109201
  3. Galleria mellonella : A model of infection to discern novel mechanisms of pathogenesis of non-toxigenic Vibrio parahaemolyticus strains vol.9, pp.1, 2011, https://doi.org/10.1080/21505594.2017.1388487
  4. Organism dual RNA‐seq reveals the importance of BarA/UvrY in Vibrio parahaemolyticus virulence vol.34, pp.6, 2011, https://doi.org/10.1096/fj.201902630r
  5. Survival upon Staphylococcus aureus mediated wound infection in Caenorhabditis elegans and the mechanism entailed vol.157, pp.None, 2011, https://doi.org/10.1016/j.micpath.2021.104952
  6. Novel Nematode-Killing Protein-1 (Nkp-1) from a Marine Epiphytic Bacterium Pseudoalteromonas tunicata vol.9, pp.11, 2011, https://doi.org/10.3390/biomedicines9111586