• 제목/요약/키워드: immune organ

검색결과 228건 처리시간 0.027초

Paraquat Induces Apoptosis through a Mitochondria-Dependent Pathway in RAW264.7 Cells

  • Jang, Yeo Jin;Won, Jong Hoon;Back, Moon Jung;Fu, Zhicheng;Jang, Ji Min;Ha, Hae Chan;Hong, SeungBeom;Chang, Minsun;Kim, Dae Kyong
    • Biomolecules & Therapeutics
    • /
    • 제23권5호
    • /
    • pp.407-413
    • /
    • 2015
  • Paraquat dichloride (N,N-dimethyl-4-4'-bipiridinium, PQ) is an extremely toxic chemical that is widely used in herbicides. PQ generates reactive oxygen species (ROS) and causes multiple organ failure. In particular, PQ has been reported to be an immunotoxic agrochemical compound. PQ was shown to decrease the number of macrophages in rats and suppress monocyte phagocytic activity in mice. However, the effect of PQ on macrophage cell viability remains unclear. In this study, we evaluated the cytotoxic effect of PQ on the mouse macrophage cell line, RAW264.7 and its possible mechanism of action. RAW264.7 cells were treated with PQ (0, 75, and $150{\mu}M$), and cellular apoptosis, mitochondrial membrane potential (MMP), and intracellular ROS levels were determined. Morphological changes to the cell nucleus and cellular apoptosis were also evaluated by DAPI and Annexin V staining, respectively. In this study, PQ induced apoptotic cell death by dose-dependently decreasing MMP. Additionally, PQ increased the cleaved form of caspase-3, an apoptotic marker. In conclusion, PQ induces apoptosis in RAW264.7 cells through a ROS-mediated mitochondrial pathway. Thus, our study improves our knowledge of PQ-induced toxicity, and may give us a greater understanding of how PQ affects the immune system.

Anti-leishmanial Effects of Trinitroglycerin in BALB/C Mice Infected with Leishmania major via Nitric Oxide Pathway

  • Nahrevanian, Hossein;Najafzadeh, Mana;Hajihosseini, Reza;Nazem, Habib;Farahmand, Mahin;Zamani, Zahra
    • Parasites, Hosts and Diseases
    • /
    • 제47권2호
    • /
    • pp.109-115
    • /
    • 2009
  • This study investigated whether trinitroglycerine (TNG) as nitric oxide (NO) releasing agent had anti-leishmanial effects and mediated pathology in BALB/c mice infected with Leishmania major. Cutaneous leishmaniasis (CL), a zoonotic infection caused by leishmania protozoa is still one of the health problems in the world and in Iran. NO is involved in host immune responses against intracellular L. major, and leishmania killing by macrophages is mediated by this substance. Moreover, application of CL treatment with NO-donors has been recently indicated. In our study, TNG was used for its ability to increase NO and to modify CL infection in mice, in order to evaluate NO effects on lesion size and formation, parasite proliferation inside macrophages, amastigote visceralization in target organs, and NO induction in plasma and organ suspensions. Data obtained in this study indicated that TNG increased plasma and liver-NO, reduced lesion sizes, removed amastigotes from lesions, livers, spleens, and lymph nodes, declined proliferation of amastigotes, hepatomegaly, and increased survival rate. However, TNG reduced spleen-NO and had no significant effects on spelenomegaly. The results show that TNG therapy reduced leishmaniasis and pathology in association with raised NO levels. TNG had some antiparasitic activity by reduction of positive smears from lesions, livers, spleens, and lymph nodes, which could emphasize the role of TNG to inhibit visceralization of L. major in target organs.

Screening of Anti-stress Activities in Extracts from Korean Medicinal Herbs

  • Kim, Dae-Ho;Kim, Jung-Hwa;Kim, Cheol-Hee;You, Jin-Hyun;Hwang, Baik;Lee, Hak-Ju;Kim, Jong-Dai;Lee, Hyeon-Yong
    • 한국약용작물학회지
    • /
    • 제13권2호
    • /
    • pp.103-109
    • /
    • 2005
  • When we carried out an anti-stress study using the extracts of A. senticosus, R. coreanus, F .japonica root, and A. fruticosa fruit grown in Korea, the results showed that blood cell counts returned to normal levels fastest with R. coreanus after stress application. The total WBC count was decreased in mice due to stress, whereas the number of lymphocytes was increased. The serum glucose level was higher in the control group compared with the comparative stress group. The weight of each organ to returning to normal level was significantly faster in those mice treated with the extracts compared with those in control groups. Especially, it even return to that of normal level with R. coreanus extract, suggesting that the administration of the plant extracts in this study would affect hormonal activities in the body to increase immune activities. F. japonica root that showed the highest anti-stress activities maybe effective for lipid and carbohydrate metabolism. These results would provide basic data to examine anti-stress effects of natural plants. Further in-depth studies could contribute in the development of functional plant materials with anti-stress activities.

각질형성세포에서 MMP-1 활성 및 자외선 유도 무모쥐 피부손상에 대한 카테킨 고함유 녹차추출물의 영향 (Effects of Catechin-rich Green Tea Extract on the MMP-1 Activity of HaCaT Keratinocyte Cells and on UVB-induced Skin Damage in Hairless Mice)

  • 양원경;박양춘;김복규;최정준;류건식;김승형
    • 한국약용작물학회지
    • /
    • 제27권2호
    • /
    • pp.143-150
    • /
    • 2019
  • Background: Skin is an organ that protects the human body from various environmental stimuli that can induce immune system activation. Skin aging can be largely divided into two categories: physiological aging, which is caused by the a decreased physiological function of the skin and structural changes with aging, and photoaging, which is caused by the chemical stress induced by external stimuli such as ultraviolet (UV) radiation. Methods and Results: The objective of this study was to investigate the anti-wrinkle and UV protective effect of catechin-rich green tea extract (CGTE) in activated keratinocyte (HaCaT cells) and UV-induced skin damage in hairless mice. The results showed that CGTE inhibits the tumor necrosis factor-alpha interferon-gamma ($TNF-{\alpha}+IFN-{\gamma}$)-induced expression of matrix metalloproteinase (MMP)-1 in HaCaT cells. In addition, the CGTE treatment significantly reduced wrinkle formation, epidermal thickness, collagen deposition, and transepidermal water loss in dorsal skin irradiated with UVB. However, the ${\beta}$-glucosidase activity was significantly increased. The CGTE treatment inhibits mRNA expression and enzyme activity of MMP-2 and MMP-9 in the dorsal skin irradiated with UVB. Conclusions: It is expected that CGTE can be effectively used as a functional food and cosmetic ingredient to improve skin moisture retention and reduce wrinkle formation.

건선에 효과적인 한약 처방 탐색 - 지질 대사를 중심으로 (Investigation of Effective Korean Herbal Medicine for Psoriasis - Focusing on Lipid Metabolism -)

  • 한창이;김준동;서광일;김규석;김윤범
    • 한방안이비인후피부과학회지
    • /
    • 제34권3호
    • /
    • pp.70-79
    • /
    • 2021
  • Objectives : The purpose of this study is to investigate the possibility of using herbal medicine for the management of psoriasis focusing on lipid metabolism. Methods : We reviewed studies about pathophysiology, and medical treatment of psoriasis, the relationship between psoriasis and metabolic syndrome and lipid metabolism, and herbal medicine on Pubmed and Google scholar. Results : Psoriasis is a chronic multi-organ inflammatory disease not limited to skin, and steroids, immuno-suppressants, and biological agents are used. It is known that psoriasis and metabolic syndrome act as mutual risk factors, and lipid metabolism are involved in psoriasis. The effects of various single herbal preparations and complex herbal extract, decoction on improving lipid metabolism have been consistently reported, and there was an improvement of psoriatic skin lesions and improvement of blood lipid levels through herbal medicine. Conclusions : Herbal medicine research in psoriasis has focused on the anti-inflammatory effect and the suppression effect of certain immune mediators. However, considering that psoriasis is affected by lipid metabolism and side effects of Western medicines, the use of herbal medicines for the purpose of controlling lipid metabolism in psoriasis is useful in aspects of reducing side effects of concurrent Western medicine, improving the severity of psoriasis, and managing metabolic risk factors.

Effect of dietary supplementation of a phytogenic blend containing Schisandra chinensis, Pinus densiflora, and Allium tuberosum on productivity, egg quality, and health parameters in laying hens

  • Moon, Seung-Gyu;Lee, Sung-Kwang;Lee, Woo-Do;Niu, Kai-Min;Hwang, Won-Uk;Oh, Jong-Seok;Kothari, Damini;Kim, Soo-Ki
    • Animal Bioscience
    • /
    • 제34권2호
    • /
    • pp.285-294
    • /
    • 2021
  • Objective: This study was conducted to investigate the supplementary effect of a phytogenic blend (SPA: a mixture containing fermented Schisandra chinensis pomace, fermented Pinus densiflora needle extract, and Allium tuberosum powder in the ratio of 2:2:1) on egg production, egg quality, blood constituents, and visceral organs in laying hens. Methods: A total of 135 Hy-line brown laying hens (48-wk-old) were randomly allocated to three dietary treatments with 5 replicates of 9 hens. The control group (CON) was fed a basal diet (no exogenous SPA addition) and the experimental groups were fed the basal diet containing SPA at the level of 0.1% and 0.3% for 6 weeks. Results: The feed intake was significantly improved in SPA supplemented groups as compared with the control (p<0.05). However, egg production, daily egg mass, and feed conversion ratio were not different among the dietary treatments (p>0.05). For egg quality traits, only Haugh unit (HU) was significantly improved in SPA (0.3%) (p<0.05) as compared with other groups. However, HU was not affected during 4-wk of storage at 18℃ among the dietary treatments (p>0.05). Furthermore, SPA supplementation did not affect the blood biochemical constituents except for the phosphate content, which was significantly higher in SPA groups than the CON group (p<0.05). There were no significant differences in visceral organ characteristics and immune indicators (immunoglobulin A [IgA], IgG, and IgM) in SPA or CON groups. Conclusion: This study suggested that the supplementation of SPA may have beneficial effects on feed intake and egg quality in laying hens.

Can Panax ginseng help control cytokine storm in COVID-19?

  • Choi, Jong Hee;Lee, Young Hyun;Kwon, Tae Woo;Ko, Seong-Gyu;Nah, Seung-Yeol;Cho, Ik-Hyun
    • Journal of Ginseng Research
    • /
    • 제46권3호
    • /
    • pp.337-347
    • /
    • 2022
  • Coronavirus disease 2019 (COVID-19) is currently a pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 are directly associated with hyper-activation of innate immune response that excessively produce pro-inflammatory cytokines and induce cytokine storm, leading to multi-organ-failure and significant morbidity/mortality. Currently, several antiviral drugs such as Paxlovid (nirmatrelvir and ritonavir) and molnupiravir are authorized to treat mild to moderate COVID-19, however, there are still no drugs that can specifically fight against challenges of SARS-CoV-2 variants. Panax ginseng, a medicinal plant widely used for treating various conditions, might be appropriate for this need due to its anti-inflammatory/cytokine/viral activities, fewer side effects, and cost efficiency. To review Panax ginseng and its pharmacologically active-ingredients as potential phytopharmaceuticals for treating cytokine storm of COVID-19, articles that reporting its positive effects on the cytokine production were searched from academic databases. Experimental/clinical evidences for the effectiveness of Panax ginseng and its active-ingredients in preventing or mitigating cytokine storm, especially for the cascade of cytokine storm, suggest that they might be beneficial as an adjunct treatment for cytokine storm of COVID-19. This review may provide a new approach to discover specific medications using Panax ginseng to control cytokine storm of COVID-19.

장기이식 거부반응과 자가면역질환 치료제로서의 CAR Treg 세포치료제의 가능성: Treg 세포치료제 임상시험 현황과 CAR T 세포치료제 허가 정보를 바탕으로 (Current Perspectives on Emerging CAR-Treg Cell Therapy: Based on Treg Cell Therapy in Clinical Trials and the Recent Approval of CAR-T Cell Therapy)

  • 강고은;정준호;양재석;김효리
    • 대한이식학회지
    • /
    • 제31권4호
    • /
    • pp.157-169
    • /
    • 2017
  • Regulatory T cells (Treg) naturally rein in immune attacks, and they can inhibit rejection of transplanted organs and even reverse the progression of autoimmune diseases in mice. The initial safety trials of Treg against graft-versus-host disease (GVHD) provided evidence that the adoptive transfer of Treg is safe and capable of limiting disease progression. Supported by such evidence, numerous clinical trials have been actively investigating the efficacy of Treg targeting autoimmune diseases, type I diabetes, and organ transplant rejection, including kidney and liver. The limited quantity of Treg cells harvested from peripheral blood and subsequent in vitro culture have posed a great challenge to large-scale clinical application of Treg; nevertheless, the concept of CAR (chimeric antigen receptor)-Treg has emerged as a potential resolution to the problem. Recently, two CAR-T therapies, tisagenlecleucel and axicabtagene ciloleucel, were approved by the US FDA for the treatment of refractory or recurrent acute lymhoblastic leukemia. This approval could serve as a guideline for the production protocols for other genetically engineered T cells for clinical use as well. The phase I and II clinical trials of these agents has demonstrated that genetically engineered and antigen-targeting T cells are safe and efficacious in humans. In conclusion, both the promising results of Treg cell therapy from the clinical studies and the recent FDA approval of CAR-T therapies are paving the way for CAR-Treg therapy in clinical use.

Primary Immunodeficiencies in Children Initially Admitted with Gastrointestinal/Liver Manifestations

  • Murat Cakir ;Nalan Yakici ;Elif Sag ;Gulay Kaya ;Aysenur Bahadir;Alper Han Cebi ;Fazil Orhan
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • 제26권4호
    • /
    • pp.201-212
    • /
    • 2023
  • Purpose: The gastrointestinal system is the most commonly affected organ, followed by the lungs, in patients with primary immunodeficiency disease (PID). Hence, it is common for children with PIDs to present with gastrointestinal symptoms. We aimed to analyze the clinical and histopathological findings of patients who were initially admitted to pediatric gastroenterology/hepatology clinics and subsequently diagnosed with PIDs to identify the clinical clues for PIDs. Methods: The demographic, laboratory, and histopathological findings, treatment modality, and outcomes of patients initially admitted to the pediatric gastroenterology/hepatology unit and subsequently diagnosed with PIDs were recorded. Results: The study included 24 patients (58.3% male; median age [range]: 29 [0.5-204] months). Common clinical presentations included chronic diarrhea (n=8), colitis (n=6), acute hepatitis (n=4), and acute liver failure (n=2). The association of autoimmune diseases, development of malignant diseases, and severe progression of viral diseases was observed in 20.8%, 8.3%, and 16.6% of the patients, respectively. Antibody deficiency was predominantly diagnosed in 29.2% of patients, combined immunodeficiency in 20.8%, immune dysregulation in 12.5%, defects in intrinsic and innate immunity in 4.2%, autoinflammatory disorders in 8.3%, and congenital defects of phagocytes in 4.2%. Five patients remained unclassified (20.8%). Conclusion: Patients with PIDs may initially experience gastrointestinal or liver problems. It is recommended that the association of autoimmune or malignant diseases or severe progression of viral diseases provide pediatric gastroenterologists some suspicion of PIDs. After screening using basic laboratory tests, genetic analysis is mandatory for a definitive diagnosis.

SARS-CoV-2 Infection Induces HMGB1 Secretion Through Post-Translational Modification and PANoptosis

  • Man Sup Kwak;Seoyeon Choi;Jiseon Kim;Hoojung Lee;In Ho Park;Jooyeon Oh;Duong Ngoc Mai;Nam-Hyuk Cho;Ki Taek Nam;Jeon-Soo Shin
    • IMMUNE NETWORK
    • /
    • 제23권3호
    • /
    • pp.25.1-25.17
    • /
    • 2023
  • Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection induces excessive pro-inflammatory cytokine release and cell death, leading to organ damage and mortality. High-mobility group box 1 (HMGB1) is one of the damage-associated molecular patterns that can be secreted by pro-inflammatory stimuli, including viral infections, and its excessive secretion levels are related to a variety of inflammatory diseases. Here, the aim of the study was to show that SARS-CoV-2 infection induced HMGB1 secretion via active and passive release. Active HMGB1 secretion was mediated by post-translational modifications, such as acetylation, phosphorylation, and oxidation in HEK293E/ACE2-C-GFP and Calu-3 cells during SARS-CoV-2 infection. Passive release of HMGB1 has been linked to various types of cell death; however, we demonstrated for the first time that PANoptosis, which integrates other cell death pathways, including pyroptosis, apoptosis, and necroptosis, is related to passive HMGB1 release during SARS-CoV-2 infection. In addition, cytoplasmic translocation and extracellular secretion or release of HMGB1 were confirmed via immunohistochemistry and immunofluorescence in the lung tissues of humans and angiotensin-converting enzyme 2-overexpressing mice infected with SARS-CoV-2.