• Title/Summary/Keyword: immune marker

Search Result 144, Processing Time 0.026 seconds

Studies on In Situ Hybridization of Electron Microscopy for Detection of Viral RNA (전자현미경 In Situ Hybridization에 의한 Viral RNA의 진단에 관한 연구)

  • 최원기;주경웅;김석홍
    • Biomedical Science Letters
    • /
    • v.2 no.2
    • /
    • pp.257-265
    • /
    • 1996
  • Simple stain and electron microscopic in situ hybridization is studied and applied for the identification of rabbit haemorrhagic disease viral RNA in a unicrylated preparation of the liver after innoculation of rabbit haemorrhagic disease virus. Hybridization for detection of viral RNA in unicryl embedded tissues using complementary 84 bases oligonucleotide probe labelled by biotin CE-phosphoramidite compared with 4717∼4800 sequences of rabbit haemorrhagic disease virus, modified hybridization protocol and antibiotin antibody-l0nm gold as signal marker. The best results were obtained in 0.02% glutaraldehyde, Unicryl resin cell block, biotinylated oligonucleotide probes, antibiotin-l0nm gold. In this report, RHD viral RNA was distributed widely within the mitochondria and nucleus of liver cell by electron microscopic in situ hybridization. In situ hybridization has become a standard method for localizing DNA or RNA sequences in tissue or celt preparation. In situ hybridization is detected the virus genome in the cells and tissue as specifically compared with others nucleic acid hybridization method.

  • PDF

Cell Motility Is Decreased in Macrophages Activated by Cancer Cell-Conditioned Medium

  • Go, Ahreum;Ryu, Yun-Kyoung;Lee, Jae-Wook;Moon, Eun-Yi
    • Biomolecules & Therapeutics
    • /
    • v.21 no.6
    • /
    • pp.481-486
    • /
    • 2013
  • Macrophages play a role in innate immune responses to various foreign antigens. Many products from primary tumors influence the activation and transmigration of macrophages. Here, we investigated a migration of macrophages stimulated with cancer cell culture-conditioned medium (CM). Macrophage activation by treatment with CM of B16F10 cells were judged by the increase in protein levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX2). The location where macrophages were at 4 h-incubation with control medium or CM was different from where they were at 5 h-incubation in culture dish. Percentage of superimposed macrophages at every 1 h interval was gradually increased by CM treatment as compared to control. Total coverage of migrated track expressed in coordinates was smaller and total distance of migration was shorter in CM-treated macrophages than that in control. Rac1 activity in CM-treated macrophages was also decreased as compared to that in control. When macrophages were treated with CM in the presence of dexamethasone (Dex), an increase in COX2 protein levels, and a decrease in Rac1 activity and total coverage of migration were reversed. In the meanwhile, biphasic changes were detected by Dex treatment in section distance of migration at each time interval, which was more decreased at early time and then increased at later time. Taken together, data demonstrate that macrophage motility could be reduced in accordance with activation in response to cancer cell products. It suggests that macrophage motility could be a novel marker to monitor cancer-associated inflammatory diseases and the efficacy of anti-inflammatory agents.

A Case of Microscopic Polyangiitis with Diffuse Alveolar Hemorrhage (폐출혈을 동반한 현미경적 다발혈관염 1예)

  • Lee, Sang-Jin;Lee, Jae-Woung;Kim, Hye-Jin;Shin, Kyeong-Cheol;Chung, Jin-Hong;Lee, Kwan-Ho;Park, Hye-Jung
    • Journal of Yeungnam Medical Science
    • /
    • v.21 no.1
    • /
    • pp.101-107
    • /
    • 2004
  • Diffuse alveolar hemorrhage is a rare but serious and frequently life-threatening complication of a variety of conditions. The first goal in the management of patients with diffuse alveolar hemorrhage is to achieve or preserve stability of the respiratory status. Subsequently, the differential diagnosis is aimed at the identification of a remediable cause of the alveolar hemorrhage. The most common causes of diffuse alveolar hemorrhage with glomerulonephritis are microscopic polyangiitis and Wegener's granulomatosis, followed by Goodpasture syndrome and systemic lupus erythematosus. Microscopic polyangiitis (MPA) is a distinct systemic small vessle vasculitis affecting small sized vessels with few or no immune deposits and with no granulomatosus inflammation. The disease may involve multiple organs such as kidney, lung, skin, joint, muscle, gastrointestinal tract, eye, and nervous system. MPA is strongly associated with antineutrophil cytoplasmic autoantibody (ANCA) that is a useful serological diagnostic marker for the most common form of necrotizing vasculitis. Our report concerns a case of microscopic polyangiitis with diffuse alveolar hemorrhage in a 54-year-old man. He was admitted to our hospital due to dyspnea upon exertion and recurrent hemoptysis. Laboratory findings showed hematuria, proteinuria and deterioration of renal function. In the chest CT scan, diffuse ground glass appearance was seen in both lower lungs. A lung biopsy revealed small vessel vasculitis with intraalveolar hemorrhage and showed a positive reaction to against perinuclear ANCA. The patient was treated with prednisolone and cyclophosphamide. Chest infiltration decreased and hemoptysis and hypoxia improved. He is still being followed up in our hospital with a low dose of prednisolone.

  • PDF

Platform Technology for Food-Grade Expression System Using the genus Bifidobacterium

  • Park, Myeong-Soo;Kang, Yoon-Hee;Cho, Sang-Hee;Seo, Jeong-Min;Ji, Geun-Eog
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2001.06a
    • /
    • pp.155-157
    • /
    • 2001
  • Bifidobacterium spp. is nonpathogenic, gram-positive and anaerobic bacteria, which inhabit the intestinal tract of humans and animals. In breast-fed infants, bifidobacteria comprise morethan 90% of the gut bacterial population. Bifidobacteria spp. are used in commericial fermented dairy products and have been suggested to exert health promoting effects on the host by maintaining intestinal microflora balances, improving lactose tolerance, reducing serum cholesterol levels, increasing synthesis of vitamins, and aiding the immune enchancement and anticarcinogenic activity for the host. These beneficial effects of Bifidobacterium are strain-related. Therefore continued efforts to improve strain characteristics are warranted. in these respect, development of vector system for Bifidobacterium is very important not only for the strain improvement but also because Bifidobacterium is most promising in serving as a delivery system for the useful gene products, such as vaccine or anticarcinogenic polypeptides, into human intestinal tract. For developing vector system, we have characterized several bifidobacterial plasmids at genetic level and developed several shuttle vectors between E. coli and Bifidobacterium using them. Also, we have cloned and sequenced several metabolic genes and food grade selection marker. Also we have obtained bifidobacterial surface protein, which will be used as the mediator for surface display of foreign genes. Recently we have succeeded in expressing amylase and GFP in Bifidobacterium using our own expression vector system. Now we are in a very exciting stage for the molecular breeding and safe delivery system using probiotic Bifidobacterium strains.

  • PDF

Paraquat Induces Apoptosis through a Mitochondria-Dependent Pathway in RAW264.7 Cells

  • Jang, Yeo Jin;Won, Jong Hoon;Back, Moon Jung;Fu, Zhicheng;Jang, Ji Min;Ha, Hae Chan;Hong, SeungBeom;Chang, Minsun;Kim, Dae Kyong
    • Biomolecules & Therapeutics
    • /
    • v.23 no.5
    • /
    • pp.407-413
    • /
    • 2015
  • Paraquat dichloride (N,N-dimethyl-4-4'-bipiridinium, PQ) is an extremely toxic chemical that is widely used in herbicides. PQ generates reactive oxygen species (ROS) and causes multiple organ failure. In particular, PQ has been reported to be an immunotoxic agrochemical compound. PQ was shown to decrease the number of macrophages in rats and suppress monocyte phagocytic activity in mice. However, the effect of PQ on macrophage cell viability remains unclear. In this study, we evaluated the cytotoxic effect of PQ on the mouse macrophage cell line, RAW264.7 and its possible mechanism of action. RAW264.7 cells were treated with PQ (0, 75, and $150{\mu}M$), and cellular apoptosis, mitochondrial membrane potential (MMP), and intracellular ROS levels were determined. Morphological changes to the cell nucleus and cellular apoptosis were also evaluated by DAPI and Annexin V staining, respectively. In this study, PQ induced apoptotic cell death by dose-dependently decreasing MMP. Additionally, PQ increased the cleaved form of caspase-3, an apoptotic marker. In conclusion, PQ induces apoptosis in RAW264.7 cells through a ROS-mediated mitochondrial pathway. Thus, our study improves our knowledge of PQ-induced toxicity, and may give us a greater understanding of how PQ affects the immune system.

Effects of Polysaccharide Ginsan from Panax ginseng on Liver Function

  • Song, Jie-Young;Medea-Akhalaia;Alexander-Platonov;Kim, Hyung-Doo;Jung, In-Sung;Han, Young-Soo;Yun, Yeon-Sook
    • Archives of Pharmacal Research
    • /
    • v.27 no.5
    • /
    • pp.531-538
    • /
    • 2004
  • Ginsan, a polysaccharide isolated from Panax ginseng, has been shown to be a potent immunomodulator, producing a variety of cytokines such as TNF-a, IL-1$\beta$, IL-2, IL-6, IL-12, IFN-${\gamma}$ and GM-CSF, and stimulating lymphoid cells to proliferate. In the present study, we analyzed some immune functions 1$^{st}$-5$^{th}$ days after ginsan i.p. injection, including the level of non-protein thiols (NPSH) as antioxidants, heme oxygenase (HO) activity as a marker of oxidative stress, zoxazolamine-induced paralysis time and level of hepatic cytochrome P-450 (CYP450) as indices of drug metabolism system, and activities of serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), total bilirubin, and albumin level as indicators of hepatotoxicity. Ginsan in the dose of 100 mg/kg caused marked elevation (1.7-2 fold) of HO activity, decrease of total CYP450 level (by 20-34%), and prolongation of zoxazolamine-induced paralysis time (by 65-70%), and showed some differences between male and female mice. Ginsan treatment did not seem to cause hepatic injury, since serum AST, ALT, and ALP activities and levels of total bilirubin and albumin were not changed.d.

XENOTRANSPLANT OF HUMAN BONE MARROW STROMAL CELLS; EFFECT ON THE REGENERATION OF AXOTOMIZED INFRAORBITAL NERVE IN RATS (인간 골수 기질세포 이종이식이 백서의 축삭절단 안와하 신경 재생에 미치는 효과)

  • Park, Eun-Jin;Kim, Eun-Seok;Kim, Jin-Man;Kim, Hyun-Ok;Yum, Kwang-Won
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.31 no.3
    • /
    • pp.239-247
    • /
    • 2005
  • This study demonstrated that xenogenic human marrow mesenchymal stem cells (hMSCs) could elicit the regeneration of the sensory nerve after axotomy in the adult rats infraorbital nerves without immunosuppression. For this, we evaluated the behavioral testing for functional recovery of the nerve and histological findings at weeks 3 and 5 compared to controls. Xenogenic hMSCs did not evoke any significant inflammatory or immunologic reaction after systemic and local administrations. HMSCs-treated rats exhibited significant improvement on sensory recovery tested with von Frey monofilaments. At 5 postoperative weeks, in the hMSCs treated nerve, expression of myelin basic protein (MBP), neurofilament (NF) at the site of axotomy was higher than control. And mRNA expression of neurotropin receptor Trk precursor (TrkPre), nerve growth factor receptor (NGFR) and neuropeptide (NPY) in trigeminal ganglion were also higher. The number of myelinated nerve at distal stump and cells in trigeminal ganglion were higher in hMSC treated rats. So it was supposed that transplanted MSCs contributed to reducing post-traumatic degeneration and production of neurotrophic factors. Immunofluorescence labeling showed small portion of hMSCs (<10%) expressed a phenotypic marker of Schwann cell (S-100). Xenogenic or allogenic mesenchymal stem cells might have immune privileged characteristics and useful tool for cell based nerve repair.

Effects of Wearing Bio-active Material Coated Fabric against γ-irradiation-induced Cellular Damage in Sprague-Dawley Rats

  • Kang, Jung Ae;Kim, Hye Rim;Yoon, Sunhye;Nam, You Ree;Park, Sang Hyun;Go, Kyung-Chan;Yang, Gwang-Wung;Rho, Young-Hwan;Park, Hyo-Suk;Jang, Beom Su
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.3
    • /
    • pp.206-210
    • /
    • 2016
  • Background: Ionizing radiation causes cellular damage and death through the direct damage and/or indirectly the production of ROS, which induces oxidative stress. This study was designed to evaluate the in vivo radioprotective effects of a bio-active material coated fabric (BMCF) against ${\gamma}$-irradiation-induced cellular damage in Sprague-Dawley (SD) rats. Materials and Methods: Healthy male SD rats wore bio-active material coated (concentrations in 10% and 30%) fabric for 7 days after 3 Gy of ${\gamma}$-irradiation. Radioprotective effects were evaluated by performing various biochemical assays including spleen and thymus index, WBC count, hepatic damage marker enzymes [aspartate transaminase (AST) and alanine transaminase (ALT)] in plasma, liver antioxidant enzymes, and mitochondrial activity in muscle. Results and Discussions: Exposure to ${\gamma}$-irradiation resulted in hepatocellular and immune systemic damage. Gamma-irradiation induced decreases in antioxidant enzymes. However, wearing the BMCF-30% decreased significantly AST and ALT activities in plasma. Furthermore, wearing the BMCF-30% increased SOD (superoxide dismutase) and mitochondrial activity. Conclusion: These results suggest that wearing BMCF offers effective radioprotection against ${\gamma}$-irradiation-induced cellular damage in SD rats.

Induction of pro-inflammatory cytokines by 29-kDa FN-f via cGAS/STING pathway

  • Hwang, Hyun Sook;Lee, Mi Hyun;Choi, Min Ha;Kim, Hyun Ah
    • BMB Reports
    • /
    • v.52 no.5
    • /
    • pp.336-341
    • /
    • 2019
  • The cGAS-STING pathway plays an important role in pathogen-induced activation of the innate immune response. The 29-kDa amino-terminal fibronectin fragment (29-kDa FN-f) found predominantly in the synovial fluid of osteoarthritis (OA) patients increases the expression of catabolic factors via the toll-like receptor-2 (TLR-2) signaling pathway. In this study, we investigated whether 29-kDa FN-f induces inflammatory responses via the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon gene (STING) pathway in human primary chondrocytes. The levels of cGAS and STING were elevated in OA cartilage compared with normal cartilage. Long-term treatment of chondrocytes with 29-kDa FN-f activated the cGAS/STING pathway together with the increased level of gamma-H2AX, a marker of DNA breaks. In addition, the expression of pro-inflammatory cytokines, including granulocyte-macrophage colony-stimulating factor (GM-CSF/CSF-2), granulocyte colony-stimulating factor (G-CSF/CSF-3), and type I interferon ($IFN-{\alpha}$), was increased more than 100-fold in 29-kDa FN-f-treated chondrocytes. However, knockdown of cGAS and STING suppressed 29-kDa FN-f-induced expression of GM-CSF, G-CSF, and $IFN-{\alpha}$ together with the decreased activation of TANK-binding kinase 1 (TBK1), interferon regulatory factor 3 (IRF3), and inhibitor protein ${\kappa}B{\alpha}$ ($I{\kappa}B{\alpha}$). Furthermore, NOD2 or TLR-2 knockdown suppressed the expression of GM-CSF, G-CSF, and $IFN-{\alpha}$ as well as decreased the activation of the cGAS/STING pathway in 29-kDa FN-f-treated chondrocytes. These data demonstrate that the cGAS/STING/TBK1/IRF3 pathway plays a critical role in 29-kDa FN-f-induced expression of pro-inflammatory cytokines.

The changes of stresses and ecdysteroid biosynthesis gene expression levels in Kynurenine 3-monooxygenase mutant Bombyx mori

  • Jeong, Chan Young;Lee, Chang Hoon;Kim, Su Bae;Kang, Sang Kuk;Ju, Wan-Taek;Kim, Seong-Wan;Kim, Nam-Suk;Kim, Kee Young;Park, Jong Woo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.43 no.1
    • /
    • pp.29-36
    • /
    • 2021
  • Silkworms have long been bred with human history to produce silk. It has been with humans for longer than other industrial insects, and the silkworm variety has been continuously improved. Silkworms have been developed into the optimal form for producing high quality silk and pupae. Recently, the production of transgenic silkworms has further expanded the possibility of industrial value of silkworms. Kynurenine 3-monooxygenase (KMO), which is a flavin enzyme, is known for its involvement in ommochrome pigment synthesis. In the field of mammals, including humans, previous studies have revealed the function and role of KMO, which is an important enzyme for various immune responses and cell protection. However, in the case of insects, the function of KMO has only been studied to be involved in the formation of pigment, and accordingly, KMO is used exclusively on screening for generation of transgenic insects as a marker. In this study, using KMO-edited silkworms, it was intended to discover the novel functions and roles of KMO in silkworms by identifying changes in the expression of various genes associated with stress and growth. The changes were observed in expressions of genes regulating on stresses to survive and those on ecdysteroid hormone between wild-type (WT) silkworms and kmo mutant silkworms. The loss of KMO, in particular, decreased the expression of the shadow (sad) gene, one of the Halloween genes in the synthesis of ecdysteroid. In conclusion, these results suggest that silkworm KMO is responsible for potential functions regarding stress response and ecdysteroid synthesis.