• Title/Summary/Keyword: immune cell

Search Result 3,146, Processing Time 0.033 seconds

Amelioration of DSS-induced colitis in mice by TNF-α-stimulated mesenchymal stem cells derived from feline adipose tissue via COX-2/PGE2 activation

  • Kyeongbo Kim;Ju-Hyun An;Su-Min Park;GaHyun Lim;Kyung-Won Seo;Hwa-Young Youn
    • Journal of Veterinary Science
    • /
    • v.24 no.4
    • /
    • pp.52.1-52.13
    • /
    • 2023
  • Background: Mesenchymal stem cells (MSCs) have been investigated as therapeutic agents for inflammatory bowel disease (IBD). Stimulation of MSCs with pro-inflammatory cytokines is an approach to enhance their immunomodulatory effects. However, further investigation is required to support their application in immune-mediated disorders and companion animals. Objectives: This study aimed to assess the therapeutic effect of tumor necrosis factor (TNF)-α-stimulated feline adipose tissue-derived MSCs (fAT-MSCs) in a dextran sulfate sodium (DSS)-induced colitis mouse model. Methods: Colitis mice was made by drinking water with 3% DSS and fAT-MSCs were injected intraperitoneally. Colons were collected on day 10. The severity of the disease was evaluated and compared. Raw 264.7 cells were cultured with the conditioned medium to determine the mechanism, using quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay. Results: TNF-α-stimulated fAT-MSCs more improved severity of DSS-induced colitis in disease activity, colon length, histologic score, and inflammatory cytokine. In sectionized colon tissues, the group comprising TNF-α-stimulated fAT-MSCs had higher proportion of CD11b+CD206+ macrophages than in the other groups. In vitro, TNF-α-stimulation increased cyclooxygenase-2 (COX-2) expression and prostaglandin E2 (PGE2) secretion from fAT-MSCs. The conditioned medium from TNF-α-stimulated fAT-MSCs enhanced the expression of interleukin-10 and arginase-1 in LPS-activated Raw 264.7 cells. Conclusions: These results represent that TNF-α-stimulated fat-mscs ameliorate the inflamed colon more effectively. Furthermore, we demonstrated that the effectiveness was interlinked with the COX-2/PGE2 pathway.

Anti-inflammation and Anti-cancer Activity of Methanol Extract of Antarctic Lichen, Usnea Aurantiaco-atra (남극 지의류 Usnea Aurantiaco-atra의 메탄올 추출물의 항염증 및 항암 활성)

  • Sung-Suk Suh
    • Journal of Life Science
    • /
    • v.33 no.12
    • /
    • pp.978-986
    • /
    • 2023
  • Inflammation by the innate immune system is a protective mechanism of the organism against infection-mediated environmental factors. It is also responsible for the pathogenesis of various human diseases, including the progression of cancer. Lichens are receiving increasing attention as a source of bioactive molecules with therapeutic potential for a variety of diseases. Additionally, the antioxidant, anti-inflammatory, and anticancer potential of lichen and its secondary metabolites have been widely reported. However, the underlying mechanism is still unknown. In the present study, to investigate molecular mechanisms of anti-inflammation and anti-cancer activity in the Antarctic lichen, Usnea aurantiaco-atra, methanol extract of Usnea aurantiaco-atra (MEUS) was used in vitro assays in RAW 264.7 macrophages cell and HCT116 colon cancer cells. Based on our data, MEUS had the anti-inflammatory activity through the modulation of main inflammatory indicators such as COX-2, IL-6, iNOS, TNF-α and NO production in a concentration-dependent manner. In addition, we observed that MEUS had cytotoxic activity against HCT116 colon cancer cells in a concentration-dependent manner, leading to a significantly reduced proliferation of the cancer cells through apoptotic induction by activating caspase-3. Taken together, this work firstly reported the anti-inflammatory and anti-cancer activities of an Antarctic lichen, Usnea aurantiaco-atra, and MEUS may provide a new insight into the molecular mechanisms underlying a link between inflammation and cancer.

Mucosal Immunity Related to CD8+ T Lymphocytes in Children with Helicobacter pylori Gastritis

  • Da Hee Yang;Ha Young Lee;Woohyuk Choi;Chang-Lim Hyun;Ki Soo Kang
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.27 no.1
    • /
    • pp.26-36
    • /
    • 2024
  • Purpose: We investigated the role of CD8+T cells as host immune factors in pediatric patients with Helicobacter pylori gastritis. Methods: Gastric mucosal tissue and blood samples were collected from 39 children, including 11 children with H. pylori infection and 28 children as controls. Anti-CD8 and anti-T-bet antibodies were used for immunohistochemistry of the gastric mucosa. For the cell surface and intracellular staining, peripheral blood mononuclear cells were stained with anti-IL7Rα, anti-CX3CR1, anti-CD8, anti-T-bet, and anti-IFN-γ antibodies. Cytokines of sera such as tumor necrosis factor alpha (TNF-α) and CX3CL1 were analyzed using enzyme- linked immunosorbent assay (ELISA). Results: In the immunohistochemistry of gastric mucosa, the frequency of CD8+ and T-bet+ T cells cells was higher in the H. pylori-positive group than in the control group (26.9± 7.8% vs. 16.9±3.3%, p<0.001; 5.0±2.5% vs. 2.2±0.7%, p=0.001). Between the control and H. pylori-positive groups, the frequency of IL-7RαlowCX3CR1+ CD8+ and T-bet+ INF-γ+ CD8+ T cells were not significantly different between surface and intracellular staining, respectively (40.4±24.0% vs. 38.2±17.8%, p=0.914; 40.4±24.0% vs. 38.2±17.8%, p=0.914). In the ELISA, no significant differences in TNF-α and CX3CL1 concentrations were observed between the control and H. pylori-positive groups (34.3±12.1 pg/mL vs. 47.0±22.6 pg/mL, p=0.114/0.5± 0.1 pg/mL vs. 0.5±0.1 pg/mL, p=0.188). Conclusion: CD8+ T and Th1 cells, which secrete IFN-γ, might play important roles in the mucosal immunity of the stomach in children with H. pylori infection.

Inhibitory Effects of Ssanghwa-tang on Lung Injury and Muscle Loss in a Cigarette Smoke Extract and Lipopolysaccharide-induced Chronic Obstructive Pulmonary Disease Mouse Model (표준담배추출물과 Lipopolysaccharide로 유발한 만성폐쇄성폐질환 동물모델에서 쌍화탕의 폐손상 및 근감소 억제 효과)

  • Jin-kwan Choi;Won-kyung Yang;Su-won Lee;Seong-cheon Woo;Seung-hyung Kim;Yang-chun Park
    • The Journal of Internal Korean Medicine
    • /
    • v.45 no.1
    • /
    • pp.11-30
    • /
    • 2024
  • Objectives: This study evaluated the effects of Ssanghwa-tang (SHT) on lung injury and muscle loss in a COPD mouse model. Methods: C57BL/6 mice were challenged with cigarette smoke extract and lipopolysaccharide, and then treated with two concentrations of SHT (250 and 500 mg/kg). After sacrifice, the bronchoalveolar lavage fluid (BALF) or lung tissue was analyzed by cytospin, ELISA, real-time PCR, flow cytometry analysis, and H&E and Masson's trichrome staining. The grip strength of COPD mice was measured using a grip strength meter. The running time of COPD mice was measured by a treadmill test. Muscle tissue of the quadriceps was stained with H&E and Masson's trichrome staining. Results: SHT significantly inhibited the increase in neutrophil numbers in BALF and significantly decreased immune cell activity in BALF and lung tissue. It also significantly inhibited the increase in TNF-α, IL-17, and MIP2 in BALF. Real-time PCR analysis revealed that the mRNA expression of TNF-α, IL-17, MIP2, and TRPV1 in lung tissue showed a significant decrease compared with the control group. Lung tissue damage was significantly reduced in the histological analysis. The grip strength and running time of the COPD mice showed a significant decrease compared with the control group. In histological staining, SHT was found to reduce the damage to muscle tissue. Conclusions: This study indicates that SHT can be used as a therapeutic agent for COPD patients by inhibiting lung injury and muscle loss.

Cigarette Smoke Extract-Treated Mouse Airway Epithelial Cells-Derived Exosomal LncRNA MEG3 Promotes M1 Macrophage Polarization and Pyroptosis in Chronic Obstructive Pulmonary Disease by Upregulating TREM-1 via m6A Methylation

  • Lijing Wang;Qiao Yu;Jian Xiao;Qiong Chen;Min Fang;Hongjun Zhao
    • IMMUNE NETWORK
    • /
    • v.24 no.2
    • /
    • pp.3.1-3.23
    • /
    • 2024
  • Cigarette smoke extract (CSE)-treated mouse airway epithelial cells (MAECs)-derived exosomes accelerate the progression of chronic obstructive pulmonary disease (COPD) by upregulating triggering receptor expressed on myeloid cells 1 (TREM-1); however, the specific mechanism remains unclear. We aimed to explore the potential mechanisms of CSE-treated MAECs-derived exosomes on M1 macrophage polarization and pyroptosis in COPD. In vitro, exosomes were extracted from CSE-treated MAECs, followed by co-culture with macrophages. In vivo, mice exposed to cigarette smoke (CS) to induce COPD, followed by injection or/and intranasal instillation with oe-TREM-1 lentivirus. Lung function and pathological changes were evaluated. CD68+ cell number and the levels of iNOS, TNF-α, IL-1β (M1 macrophage marker), and pyroptosis-related proteins (NOD-like receptor family pyrin domain containing 3, apoptosis-associated speck-like protein containing a caspase-1 recruitment domain, caspase-1, cleaved-caspase-1, gasdermin D [GSDMD], and GSDMD-N) were examined. The expression of maternally expressed gene 3 (MEG3), spleen focus forming virus proviral integration oncogene (SPI1), methyltransferase 3 (METTL3), and TREM-1 was detected and the binding relationships among them were verified. MEG3 increased N6-methyladenosine methylation of TREM-1 by recruiting SPI1 to activate METTL3. Overexpression of TREM-1 or METTL3 negated the alleviative effects of MEG3 inhibition on M1 polarization and pyroptosis. In mice exposed to CS, EXO-CSE further aggravated lung injury, M1 polarization, and pyroptosis, which were reversed by MEG3 inhibition. TREM-1 overexpression negated the palliative effects of MEG3 inhibition on COPD mouse lung injury. Collectively, CSE-treated MAECs-derived exosomal long non-coding RNA MEG3 may expedite M1 macrophage polarization and pyroptosis in COPD via the SPI1/METTL3/TREM-1 axis.

The effects of synbiotics-glyconutrients on growth performance, nutrient digestibility, gas emission, meat quality, and fatty acid profile of finishing pigs

  • Olivier Munezero;Sungbo Cho;In Ho Kim
    • Journal of Animal Science and Technology
    • /
    • v.66 no.2
    • /
    • pp.310-325
    • /
    • 2024
  • Glyconutrients help in the body's cell communication. Glyconutrients and synbiotics are promising options for improving immune function. Therefore, we hypothesized that combining synbiotics and glyconutrients will enhance pig nutrient utilization. 150 pigs (Landrace × Yorkshire × Duroc), initially weighing 58.85 ± 3.30 kg of live body weight (BW) were utilized to determine the effects of synbiotics-glyconutrients (SGN) on the pigs' performance, feed efficiency, gas emission, pork traits, and composition of fatty acids. The pigs were matched by BW and sex and chosen at random to 1 of 3 diet treatments: control = Basal diet; TRT1 = Basal diet + SGN 0.15%; TRT2 = Basal diet + SGN 0.30%%. The trials were conducted in two phases (weeks 1-5 and weeks 5-10). The average daily gain was increased in pigs fed a basal diet with SGN (p = 0.036) in weeks 5-10. However, the apparent total tract digestibility of dry matter, nitrogen, and gross energy did not differ among the treatments (p > 0.05). Dietary treatments had no effect on NH3, H2S, methyl mercaptans, acetic acids, and CO2 emissions (p > 0.05). Improvement in drip loss on day 7 (p = 0.053) and tendency in the cooking loss were observed (p = 0.070) in a group fed basal diets and SGN at 0.30% inclusion level. The group supplemented with 0.30% of SGN had higher levels of palmitoleic acid (C16:1), margaric acid (C17:0), omega-3 fatty acid, omega-6 fatty acid, and ω-6: ω-3 ratio (p = 0.034, 0.020, 0.025, 0.007, and 0.003, respectively) in the fat of finishing pigs. Furthermore, group supplemented with 0.30% of SGN improved margaric acid (C17:0), linoleic acid (C18:2n6c), arachidic acid (C20:0), omega 6 fatty acid, omega-6 to omega-3 ratio, unsaturated fatty acid, and monounsaturated fatty acid (p = 0.037, 0.05, 0.0142, 0.036, 0.033, 0.020, and 0.045, respectively) in the lean tissues of finishing pigs compared to pigs fed with the control diets. In conclusion, the combination of probiotics, prebiotics, and glyconutrients led to higher average daily gain, improved the quality of pork, and more favorable fatty acid composition. Therefore, these results contributed to a better understanding of the potential of SGN combinations as a feed additive for pigs.

Effects of an in vitro vitamin D treatment on the inflammatory responses in visceral adipose tissue from Ldlr-/- mice

  • Deok Hoon Kwon;Jungwon Hwang;Hyeyoung You;Na Young Kim;Ga Young Lee;Sung Nim Han
    • Nutrition Research and Practice
    • /
    • v.18 no.1
    • /
    • pp.19-32
    • /
    • 2024
  • BACKGROUND/OBJECTIVES: Atherosclerosis is associated with increased inflammation in the visceral adipose tissue (VAT). Vitamin D has been reported to modulate the inflammatory responses of stromal vascular cells (SVCs) and adipocytes in adipose tissue, but the role of vitamin D in atherosclerosis biology is unclear. This study examined the effects of in vitro 1,25-dihydroxyvitamin D3 (1,25[OH]2D3) treatment on the inflammatory responses of SVCs and adipocytes from atherosclerotic mice. MATERIALS/METHODS: C57BL/6J (B6) mice were divided randomly into 2 groups and fed a 10% kcal fat control diet (control group, CON) or 41% kcal fat, 0.21% cholesterol (high fat + cholesterol, HFC) diet (obese group, OB), and B6.129S7-Ldlrtm1Her/J (Ldlr-/-) mice were fed a HFC diet (obese with atherosclerosis group, OBA) for 16 weeks. SVCs and adipocytes isolated from VAT were pre-incubated with 1,25(OH)2D3 for 24 h and stimulated with lipopolysaccarides for the next 24 h. Proinflammatory cytokine production by adipocytes and SVCs, the immune cell population in SVCs, and the expression of the genes involved in the inflammatory signaling pathway in SVCs were determined. RESULTS: The numbers of total macrophages and SVCs per mouse were higher in OB and OBA groups than the CON group. The in vitro 1,25(OH)2D3 treatment significantly reduced macrophages/SVCs (%) in the OBA group. Consistent with this change, the production of interleukin-6 and monocyte chemoattractant protein 1 (MCP-1) by SVCs from the OBA group was decreased by 1,25(OH)2D3 treatment. The 1,25(OH)2D3 treatment significantly reduced the toll-like receptor 4 and dual-specificity protein phosphatase 1 (also known as mitogen-activated protein kinase phosphatase 1) mRNA levels in SVCs and MCP-1 production by adipocytes from all 3 groups. CONCLUSIONS: These findings suggest that vitamin D can attribute to the inhibition of the inflammatory response in VAT from atherosclerotic mice by reducing proinflammatory cytokine production.

Immuno-Enhancing Effect of Enzymatic Extract of Sargassum coreanum Using Crude Enzyme from Shewanella oneidensis PKA 1008 (Shewanella oneidensis PKA 1008 유래 조효소 처리에 의한 큰잎모자반(Sargassum coreanum) 추출 분해물의 면역증진 효과)

  • Park, Sun-Hee;Kim, Min-Ji;Kim, Go-Eun;Park, So-Yeong;Kim, Koth-Bong-Woo-Ri;Kim, Yeon-Ji;Cho, Young-Je;Ahn, Dong-Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.8
    • /
    • pp.919-928
    • /
    • 2017
  • The immuno-enhancing effects of alginate oligosaccharides from Sargassum coreanum were investigated. The alginate oligosaccharides were produced by an alginate-degrading enzyme from S. oneidensis PKA 1008. The degraded alginate oligosaccharides were visualized by thin-layer chromatography developed using a solvent system of 1-butanol/methanol/water, 4:1:2 (v/v/v). Alginate was degraded into dimmers at 60 h. As a result, the levels of Th1 cytokine [interferon $(IFN)-{\gamma}$ and interleukin (IL)-2] and Th2 cytokine (IL-6 and IL-10) increased with increasing incubation time compared to the control in vitro. Enzymatic extract treatment promoted proliferation of splenocytes at concentrations of 100 and 200 mg/kg at 24 h in vivo. Secretion of $IFN-{\gamma}$ and IL-2 significantly increased in a dose-dependent manner at 24 h as well as induced higher production of IgG2a in serum. Natural killer cell activity was measured and tended to increase. In addition, complete blood cell counts increased in a dose-dependent manner. These results indicate that alginate oligosaccharides produced by crude enzyme from S. oneidensis PKA 1008 may have significant immune activities.

Clinical implication of Dendritic Cell Infiltration in Cervical Tuberculous Lymphadenitis (결핵성 경부 림프절염에서 수지상돌기세포의 침윤과 임상양상의 연관성)

  • Jung, Jae Woo;Lee, Young Woo;Choi, Jae Cheol;Yoo, Seung Min;Lee, Hwa Yeon;Lim, Seoung Young;Shin, Jong Wook;Kim, Jae Yoel;Park, In Whn;Kim, Mi Kyung;Choi, Byoung Whui
    • Tuberculosis and Respiratory Diseases
    • /
    • v.60 no.5
    • /
    • pp.523-531
    • /
    • 2006
  • Background : Cervical tuberculous lymphadenopathy is a very common disease with a similar incidence to pulmonary tuberculosis. Dendritic cells play a role of initial antigen presentation of this illness. Nevertheless, the precise role of these antigen-presenting cells according to the clinical features in unclear. The aim of this study was to determine the clinical implication of dendritic cell infiltration in the cervical lymph nodes. Methods : A review of the clinical characteristics was carried out retrospectively based on the clinical records and radiography. Immunohistochemical staining was performed on the available histology specimens of 72 cases using the S-100b polyclonal antibody for dendritic cells. The number of dendritic cells with tuberculous granuloma were determined. A $X^2$ test, unpaired T test and multiple logistic regression analysis were performed. Results : Thirty percent of subjects had previous or concurrent pulmonary TB. Twenty one percent of cases showed a positive reaction on the AFB stain. Within a granuloma, the number of infiltrated dendritic cells was $113.0{\pm}7.0$. The incidence of fever and cough decreased with increasing infiltration of dendritic cells Multivariate regression analysis showed that the infiltration of dendritic cells could significantly contribute to fever. Conclusion : Overall, dendritic cells can control a Mycobacterium tuberculosis infection and modulate the immune response, as well as resolve the clinical manifestations of TB lymphadenopathy.

Tributyltin Induces Adipogenesis and Apoptosis of Rat Thymic Epithelial Cells (Tributyltin에 의한 흰쥐 흉선 내 상피세포의 지방세포 유도와 세포자연사 증가)

  • Lee, Hyo-Jin;Lee, A-Ra;Ahn, Bo-Ram;Jeon, Eun-Je;Jeong, Ye-Ji;Yang, Hyun-Won
    • Development and Reproduction
    • /
    • v.15 no.4
    • /
    • pp.373-383
    • /
    • 2011
  • Tributyltin (TBT) is one of endocrine disrupters which are known as having similar function to sex steroid hormone inducing apoptosis in various tissues of rodents. Recently, it has been reported that TBT induces apoptosis in thymus causing the decreased thymic function, but little is known about the mechanism. To elucidate the mechanism, three-week-old SD female rats were orally administrated with TBT 1, 10, and 25 mg per body weight (kg) and sesame oil as a control for 7 days. On day 8, the thymi were obtained and weighed, and then the number of thymocytes was counted. We also performed H&E staining, TUNEL assay, and Annexin V flow cytometric analysis to examine the apoptosis rates and the structure in the thymus. Next, we investigated the adipogenesis and apoptosis-related mRNA expression levels in the thymi by real-time PCR. The thymic weight and the number of thymocytes were decreased by TBT in a dose-dependent manner. As a result of the H&E staining, the boundary between cortical and medullary area was blurred in the thymi of TBT treated rats compared to those of controls. In the results of TUNEL assay and Annexin V flow cytometric analysis, apoptosis rates in the thymus were increased after TBT treatment. The expression levels of thymic epithelial cell marker genes such as EVA, KGF, AIRE, and IL-7 were significantly decreased in the thymi of TBT treated rats, but $PPAR{\gamma}$, aP2, PEPCK, and CD36 were significantly increased. The expression of $TNF{\alpha}$ and TNFR1 as apoptosis-related genes also was significantly increased after TBT treatment. The present study demonstrates that TBT can increase the expression of adipogenesis and apoptosis-related genes leading to apoptosis in the thymus. These results suggest that the increased adipogenesis of thymus by TBT exposure might induce apoptosis in the thymus resulting in a loss in thymic immune function.