• Title/Summary/Keyword: immobilized metal affinity chromatography

Search Result 34, Processing Time 0.021 seconds

Cloning, Characterization, and Expression of Xylanase A Gene from Paenibacillus sp. DG-22 in Escherichia coli

  • Lee, Tae-Hyeong;Lim, Pyung-Ok;Lee, Yong-Eok
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.29-36
    • /
    • 2007
  • The xynA gene encoding the xylanase A of Paenibacillus sp. DG-22 was isolated with a DNA probe obtained by PCR amplification, using degenerated primers deduced from the amino acid residues of the known N-terminal region of the purified enzyme and the conserved region in the family 11 xylanases. The positive clones were screened on the LB agar plates supplemented with xylan, by the Congo-red staining method. The xynA gene consists of a 630-bp open reading frame encoding a protein of 210 amino acids, and the XynA preprotein contains a 28-residues signal peptide whose cleavage yields a l82-residues mature protein of a calculated molecular weight of 20,000Da and pI value of 8.77. The cloned DNA fragment also has another ORF of 873 nucleotides that showed 76% identity to the putative transcriptional activator of Bacillus halodurans C-125. Most of the xylanase activity was found in the periplasmic space of E. coli. The xynA gene was subcloned into pQE60 expression vector to fuse with six histidine-tag. The recombinant xylanase A was purified by heating and immobilized metal affinity chromatography. The optimum pH and temperature of the purified enzyme were 6.0 and $60^{\circ}C$, respectively. This histidine-tagged xylanase A was less thermostable than the native enzyme.

Characterization of Dephosphocoenzyme A Kinase from Streptomyces peucetius ATCC27952, and Its Application for Doxorubicin Overproduction

  • Lee, Na-Rae;Rimal, Hemraj;Lee, Joo-Ho;Oh, Tae-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.9
    • /
    • pp.1238-1244
    • /
    • 2014
  • Dephosphocoenzyme A (CoaE) catalyzes the last step in the biosynthesis of the cofactor coenzyme A. In this study, we report the identification and application of CoaE from Stretomyces peucetius ATCC27952. After expression of coaE, the protein was found to have a molecular mass of 28.6 kDa. Purification of the His-tagged fused CoaE protein was done by immobilized metal-affinity chromatography, and then in vitro enzymatic coupling assay was performed. The increasing NADH consumption with time shed light on the phosphorylating activity of CoaE. Furthermore, the overexpression of coaA and coaE independently under the $ermE^*$ promoter in the doxorubicin -producing wild type strain, resulted in 1.4- and 1.5-fold enhancements in doxorubicin production, respectively. In addition, the overexpression of both genes together showed a 2.1-fold increase in doxorubicin production. These results established a positive role for secondary metabolite production from Streptomyces peucetius.

Expression and Purification of Ubiquitin-Specific Protease (UBP1) of Saccharomyces cerevisiae in Recombinant Escherichia Coli

  • Na, Kang-In;Kim, Myoung-Dong;Min, Won-Ki;Kim, Jeong-Ah;Lee, Woo-Jong;Kim, Dae-Ok;Park, Kyung-Moon;Seo, Jin-Ho
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.6
    • /
    • pp.599-602
    • /
    • 2005
  • Truncated form of UBP1, an ubiquitin-specific protease of Saccharomyces cerevisiae, was overexpressed in Escherichia coli. The hexahistidine residue $(His_6)$ was fused to the N-terminus of truncated UBP1 and the corresponding recombinant protein was purified with high yield by immobilized metal affinity chromatography. The truncated form of UBP1 protein was functional to cleave ubiquitinated human growth hormone as substrate. Effects of pH and temperature were investigated in order to optimize deubiquitinating reactions for the truncated UBP1. Optimum temperature and pH for the cleavage reaction were $40^{\circ}C$ and pH 8.0, respectively.

Expression of Polyhistidine-Containing Fusion Human HepG2 Type Glucose Transport Protein in Spodoptera Cells and Its Purification Using a Metal Affinity Chromatography

  • Lee, Chong-Kee
    • Biomedical Science Letters
    • /
    • v.16 no.3
    • /
    • pp.201-206
    • /
    • 2010
  • In order to develop procedures for the rapid isolation of recombinant sugar transporter in functional form from away from the endogenous insect cell transporter, gene fusion techniques were exploited. Briefly, BamH1-digested human HepG2 type glucose transport protein cDNA was first cloned into a transfer vector pBlueBacHis, containing a tract of six histidine residues. Recombinant baculoviruses including the human cDNA were then generated by allelic exchange following transfection of insect cells with wild-type BaculoGold virus DNA and the recombinant transfer vector. Plaque assay was then performed to obtain and purify recombinant viruses expressing the human transport protein. All the cell samples that had been infected with viruses from the several blue plaques exhibited a positive reaction in the immnuassay, demonstrating expression of the glucose transport protein. In contrast, no color development in the immunoassay was observed for cells infected with the wild-type virus or no virus. Immunoblot analysis showed that a major immunoreactive band of apparent Mr 43,000~44,000 was evident in the lysate from cells infected with the recombinant baculovirus. Following expression of the recombinant fusion protein with the metal-binding domain and enterokinase cleavage site, the fusion protein was recovered by competition with imidizole using immobilized metal charged resin. The leader peptide was then removed from the fusion protein by cleavage with porcine enterokinase. Final separation of the recombinant protein of the interest was achieved by passage over $Ni^{2+}$-charged resin under binding conditions. The expressed transport protein bound cytochalasin B and demonstrated a functional similarity to its human counterpart.

Soluble expression, purification and the role of C-terminal glycine residues in scorpion toxin BmK AGP-SYPU2

  • Zhang, Rong;Cui, Yong;Zhang, Xi;Yang, Zhuo;Zhao, Yongshan;Song, Yong-Bo;Wu, Chunfu;Zhang, Jinghai
    • BMB Reports
    • /
    • v.43 no.12
    • /
    • pp.801-806
    • /
    • 2010
  • The existence of glycine residues in long-chain scorpion toxins has been well documented. However, their role as analgesics has not been evaluated. To address this issue, we investigated the functional role of glycines in the C-terminal end of Chinese-scorpion toxin from Buthus martensii Karsch (BmK AGP-SYPU2) using site-directed mutagenesis and analgesic activity assays. Recombinant BmK AGP-SYPU2 and its mutants were efficiently expressed in E. coli and purified to homogeneity using immobilized metal ion affinity chromatography (IMAC) and cation exchange chromatography. The mouse-twisting test was used to detect the analgesic activity of BmK AGP-SYPU2 and its mutants. As a result, we identified glycines at the C-terminal end that, when altered, significantly affected analgesic activity. Also, Mut6566 was significantly decreased compared to BmK AGP-SYPU2. These data indicate that the glycines at the C-terminal end are important for the analgesic activity of BmK AGP-SYPU2.

One-step Purification of Poly-His Tagged Penicillin G Acylase Expressed in E. coli

  • Kim, Jin-Hee;Kang, Hye-Jin;Kim, Eung-Soo;Kim, Jeong-Ho;Koo, Yoon-Mo
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.2
    • /
    • pp.231-236
    • /
    • 2004
  • The inexpensive large-scale production of pure PGA (Penicillin G Acylase) has been a commercial goal. PGA has been used as a model enzyme in the development of simple one-step purification methods. In this study, the purification of poly-His tagged PGA protein secreted into the periplasmic space was carried out by using immobilized metal-ion affinity chromatography (IMAC). The PGA gene was obtained from E. coli ATCC 11105. Codons encoding histidines were fused at the C-terminus of the PGA gene by PCR. E. coli JM109 harboring pPGA-HIS6 vector produced active his-tagged acylases in the presence of lac promoter during cultivation at $26^{\circ}C$. The maximum specific activity of the acylase purified by using one-step chromatography after osmotic shock was 38.5 U/mg and was recovered with the yield of 70%. Both 23 kDa ($\alpha$) and 62 kDa ($\beta$) subunits were recovered by using IMAC with just C-terminus tagging of the $\beta$ subunit. The purification of the periplasmic fraction by osmotic shock and that of purified acylase was increased by 2.6-fold and 19-fold, respectively, compared to the crude extract.

Cloning, Expression, and Characterization of Bacillus sp. snu-7 Inulin Fructotransferase

  • Kim, Chung-Sei;Hong, Chang-Ki;Kim, Kyoung-Yun;Wang, Xiu-Ling;Kang, Su-Il;Kim, Su-Il
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.37-43
    • /
    • 2007
  • A gene encoding inulin fructotransferase (di-D-fructofuranose 1,2': 2,3' dianhydride [DFA III]-producing IFTase, EC 4.2.2.18) from Bacillus sp. snu-7 was cloned. This gene was composed of a single, 1,353-bp open reading frame encoding a protein composed of a 40-amino acid signal peptide and a 410-amino acid mature protein. The deduced amino acid sequence was 98% identical to Arthrobacter globiformis C11-1 IFTase (DFA III-producing). The enzyme was successfully expressed in E. coli as a functionally active, His-tagged protein, and it was purified in a single step using immobilized metal affinity chromatography. The purified enzyme showed much higher specific activity (1,276 units/mg protein) than other DFA III-producing IFTases. The recombinant and native enzymes were optimally active in very similar pH and temperature conditions. With a 103-min half-life at $60^{\circ}C$, the recombinant enzyme was as stable as the native enzyme. Acidic residues and cysteines potentially involved in the catalytic mechanism are proposed based on an alignment with other IFTases and a DFA IIIase.

Identification and Characterization of a Pantothenate Kinase (PanK-sp) from Streptomyces peucetius ATCC 27952

  • Mandakh, Ariungerel;Niraula, Narayan Prasad;Kim, Eung-Pil;Sohng, Jae-Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.12
    • /
    • pp.1689-1695
    • /
    • 2010
  • Pantothenate kinase (PanK) catalyzes the first step in the biosynthesis of the essential and ubiquitous cofactor coenzyme A (CoA) in all organisms. Here, we report the identification, cloning, and characterization of panK-sp from Streptomyces peucetius ATCC 27952. The gene encoded a protein of 332 amino acids with a calculated molecular mass of 36.8 kDa and high homology with PanK from S. avermitilis and S. coelicolor A3(2). To elucidate the putative function of PanK-sp, it was cloned into pET32a(+) to construct pPKSP32, and the PanK-sp was then expressed in E. coli BL21(DE3) as a His-tag fusion protein and purified by immobilized metal affinity chromatography. The enzyme assay of PanK-sp was carried out as a coupling assay. The gradual decrease in NADH concentration with time clearly indicated the phosphorylating activity of PanK-sp. Furthermore, the ca. 1.4-fold increase of DXR and the ca. 1.5-fold increase of actinorhodin by in vivo overexpression of panK-sp, constructed in pIBR25 under the control of a strong $ermE^*$ promoter, established its positive role in secondary metabolite production from S. peucetius and S. coelicolor, respectively.

Caspase-3-facilitated Stoichiometric Cleavage of a Large Recombinant Polyprotein (카스파제-3 효소를 이용한 폴리-단백질의 정량적 프로세싱 분석)

  • Kim, Moonil
    • Journal of Life Science
    • /
    • v.25 no.4
    • /
    • pp.385-389
    • /
    • 2015
  • In this study, it is reported that a large polyprotein can be stoichiometrically cleaved by the use of caspase-3-dependent proteolysis. Previously, it has been shown that the proteolytic IETD motif was partially processed when treated with caspase-3, while the DEVD motif was completely cleaved. The cleavage efficiency of the DEVD-based substrate was approximately 2.0 times higher than that of the IETD substrate, in response to caspase-3. Based on this, 3 protein genes of interest were genetically linked to each other by adding two proteolytic cleavage sequences, DEVD and IETD, for caspase-3. Particularly, glutathione-S transferase (GST), maltose binding protein (MBP), and red fluorescent protein (RFP) were chosen as model proteins due to the variation in their size. The expressed polyprotein was purified by immobilized metal ion affinity chromatography (IMAC) via a hexa-histidine tag at the C-terminal end, showing 93 kDa of a chimeric GST:MBP:RFP fusion protein. In response to caspase-3, cleavage products, such as MBP:RFP (68 kDa), MBP (42 kDa), RFP (26 kDa), and GST (25 kDa), were separated from a large precursor GST:MBP:RFP (93 kDa) via SDS-PAGE. The results obtained from this study indicate that a multi-protein can be stoichiometrically produced from a large poly-protein by using proteolytic recognition motifs, such as DEVD and IETD tetra-peptides, for caspase-3.

Soluble Prokaryotic Expression and Purification of Bioactive Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand

  • Do, Bich Hang;Nguyen, Minh Tan;Song, Jung-A;Park, Sangsu;Yoo, Jiwon;Jang, Jaepyeong;Lee, Sunju;So, Seoungjun;Yoon, Yejin;Kim, Inki;Lee, Kyungjin;Jang, Yeon Jin;Choe, Han
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.12
    • /
    • pp.2156-2164
    • /
    • 2017
  • Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is considered as an antitumor agent owing to its ability to induce apoptosis of cancer cells without imparting toxicity toward most normal cells. TRAIL is produced in poor yield because of its insoluble expression in the cytoplasm of E. coli. In this study, we achieved soluble expression of TRAIL by fusing maltose-binding protein (MBP), b'a' domain of protein disulfide isomerase (PDIb'a'), or protein disulfide isomerase at the N-terminus of TRAIL. The TRAIL was purified using subsequent immobilized metal affinity chromatography and amylose-binding chromatography, with the tag removal using tobacco etch virus protease. Approximately 4.5 mg of pure TRAIL was produced from 125 ml flask culture with a purification yield of 71.6%. The endotoxin level of the final product was $0.4EU/{\mu}g$, as measured by the Limulus amebocyte lysate endotoxin assay. The purified TRAIL was validated and shown to cause apoptosis of HeLa cells with an $EC_{50}$ and Hill coefficient of $0.6{{\pm}}0.03nM$ and $2.41{\pm}0.15$, respectively. The high level of apoptosis in HeLa cells following administration of purified TRAIL indicates the significance and novelty of this method for producing high-grade and high-yield TRAIL.