• Title/Summary/Keyword: imaging method

Search Result 2,936, Processing Time 0.034 seconds

A Study on the Accuracy and Convenience of Imaging Method Using Support Device in Knee Joint Lateral Radiography (슬관절의 측면 방사선 촬영에서 보조기구를 이용한 검사방법의 정확성과 편의성에 대한 연구)

  • Uhm, Soyeong;Cho, Yongkeun;Kang, Sungjin
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.4
    • /
    • pp.253-262
    • /
    • 2017
  • In lateral projection imaging method of knee joint, a method that adjusts the incidence angle of central X-ray toward the head side to $5{\sim}7^{\circ}$ in true lateral position which is existing recommended is called imaging method A, Method of imaging the central X-ray perpendicular to the horizontal plane of the examination table toward the knee is called imaging method B, and a method in which the central X-ray is perpendicularly applied to the joints while the lateral side of the distal tibia is compensated by radiolucent materials is called as method C. After tests each imaging method to classified study subject respectively, the joint space distance and the distance between lateral and medial condyle of femur were measured and compared as the quantitative index from the three imaging methods. In addition, the convenience of each imaging method was confirmed through questionnaires to practician. According to the result of the quantitative index, there is no statistically significant difference in imaging method A and C(p>0.05). However, imaging method B showed a significant difference in both A and C(p<0.05). As a result of evaluating the convenience of the imaging method, imaging method A was relatively assessed lower in all items than imaging methods B and C, and as a small difference, imaging method B is assessed higher than C. In this study suggested new knee joint lateral projection imaging method, by using a simple support device, could describe joint space as not much different as existing recommended method without some complex process, and could increase convenience of the practician in the process of the imaging.

Super-spatial resolution method combined with the maximum-likelihood expectation maximization (MLEM) algorithm for alpha imaging detector

  • Kim, Guna;Lim, Ilhan;Song, Kanghyon;Kim, Jong-Guk
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2204-2212
    • /
    • 2022
  • Recently, the demand for alpha imaging detectors for quantifying the distributions of alpha particles has increased in various fields. This study aims to reconstruct a high-resolution image from an alpha imaging detector by applying a super-spatial resolution method combined with the maximum-likelihood expectation maximization (MLEM) algorithm. To perform the super-spatial resolution method, several images are acquired while slightly moving the detector to predefined positions. Then, a forward model for imaging is established by the system matrix containing the mechanical shifts, subsampling, and measured point-spread function of the imaging system. Using the measured images and system matrix, the MLEM algorithm is implemented, which converges towards a high-resolution image. We evaluated the performance of the proposed method through the Monte Carlo simulations and phantom experiments. The results showed that the super-spatial resolution method was successfully applied to the alpha imaging detector. The spatial resolution of the resultant image was improved by approximately 12% using four images. Overall, the study's outcomes demonstrate the feasibility of the super-spatial resolution method for the alpha imaging detector. Possible applications of the proposed method include high-resolution imaging for alpha particles of in vitro sliced tissue and pre-clinical biologic assessments for targeted alpha therapy.

Computational Implementation of Asymmetric Integral Imaging by Use of Two Crossed Lenticular Sheets

  • Shin, Dong-Hak;Cho, Myung-Jin;Kim, Eun-Soo
    • ETRI Journal
    • /
    • v.27 no.3
    • /
    • pp.289-293
    • /
    • 2005
  • We propose an asymmetric integral imaging method to adjust the resolution and depth of a three-dimensional image. Our method is obtained by use of two lenticular sheets with different pitches fabricated under the same F/#. The asymmetric integral imaging is the generalized version of integral imaging, including both conventional integral imaging and one-dimensional integral imaging. We present experimental results to test and verify the performance of our method computationally.

  • PDF

Subjective Imaging Effect Assessment for Intelligent Imaging Terminal Design: a Method for Engineering Site

  • Liu, Haoting;Lv, Ming;Yu, Weiqun;Guo, Zhenhui;Li, Xin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.3
    • /
    • pp.1043-1064
    • /
    • 2020
  • A kind of Subjective Imaging Effect Assessment (SIEA) method and its applications on intelligent imaging terminal design in engineering site are presented. First, some visual assessment indices are used to characterize the imaging effect: the image brightness, the image brightness uniformity, the color image contrast, the image edge blur, the image color difference, the image saturation, the image noise, and the integrated imaging effect index. A linear weighted function is employed to carry out the SIEA computation and the Analytic Hierarchy Process (AHP) technique is used to estimate its weights. Second, a SIEA software is developed. It can play images after the settings of assessment index or assessment reaction time, etc. Third, two cases are used to illustrate the application effects of proposed method: the image enhancement system design for surveillance camera and the imaging environment perception system design for intelligent lighting terminal. A Prior Sequential Stimulus (PSS) experiment is proposed to improve the evaluation stability of SIEA method. Many experiment results have shown the proposed method can realize a stable system design or parameters setting for the intelligent imaging terminal in engineering site.

Fast MR Imaging Technique by Using Locally-Linear Gradient Field (부분적인 경사자계를 이용한 고속 자기공명 영상촬영기법)

  • 양윤정;이종권
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.1
    • /
    • pp.93-98
    • /
    • 1996
  • The purpose of this paper is to propose a new localized imaging method of reduced imaging time luting a locally-linear gradient. Since most fast MR(Magnetic Resonance) imaging methods need the whole $\kappa$-space(Spatial frequency space) data corresponding to the whole imaging area, there are limitstions in reducing the minimum imaging time. The imaging method proposed in this paper uses a specially-made gradient coil generating a local ramp-shape field and uniform field outside of the imaging areal Conventional imaging sequences can be used without any RF/gradient pulse sequence modifiestions except the change in the number of encoding steps and the field of view.

  • PDF

Simple Denoising Method for Novel Speckle-shifting Ghost Imaging with Connected-region Labeling

  • Yuan, Sheng;Liu, Xuemei;Bing, Pibin
    • Current Optics and Photonics
    • /
    • v.3 no.3
    • /
    • pp.220-226
    • /
    • 2019
  • A novel speckle-shifting ghost imaging (SSGI) technique is proposed in this paper. This method can effectively extract the edge of an unknown object without achieving its clear ghost image beforehand. However, owing to the imaging mechanism of SSGI, the imaging result generally contains serious noise. To solve the problem, we further propose a simple and effective method to remove noise from the speckle-shifting ghost image with a connected-region labeling (CRL) algorithm. In this method, two ghost images of an object are first generated according to SSGI. A threshold and the CRL are then used to remove noise from the imaging results in turn. This method can retrieve a high-quality image of an object with fewer measurements. Numerical simulations are carried out to verify the feasibility and effectiveness.

Extraction of Sizes and Velocities of Spray Droplets by Optical Imaging Method

  • Choo, Yeonjun;Kang, Boseon
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.7
    • /
    • pp.1236-1245
    • /
    • 2004
  • In this study, an optical imaging method was developed for the measurements of the sizes and velocities of droplets in sprays. Double-exposure single-frame spray images were captured by the imaging system. An image processing program was developed for the measurements of the sizes and positions of individual particles including separation of the overlapped particles and particle tracking and pairing at two time instants. To recognize and separate overlapping particles, the morphological method based on watershed segmentation as well as separation using the perimeter and convex hull of image was used consecutively. Better results in separation were obtained by utilization of both methods especially for the multiple or heavily-overlapped particles. The match probability method was adopted for particle tracking and pairing after identifying the positions of individual particles and it produced good matching results even for large particles like droplets in sprays. Therefore, the developed optical imaging method could provide a reliable way of analyzing the motion and size distribution of droplets produced by various sprays and atomization devices.

Adaptive White Point Extraction based on Dark Channel Prior for Automatic White Balance

  • Jo, Jieun;Im, Jaehyun;Jang, Jinbeum;Yoo, Yoonjong;Paik, Joonki
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.6
    • /
    • pp.383-389
    • /
    • 2016
  • This paper presents a novel automatic white balance (AWB) algorithm for consumer imaging devices. While existing AWB methods require reference white patches to correct color, the proposed method performs the AWB function using only an input image in two steps: i) white point detection, and ii) color constancy gain computation. Based on the dark channel prior assumption, a white point or region can be accurately extracted, because the intensity of a sufficiently bright achromatic region is higher than that of other regions in all color channels. In order to finally correct the color, the proposed method computes color constancy gain values based on the Y component in the XYZ color space. Experimental results show that the proposed method gives better color-corrected images than recent existing methods. Moreover, the proposed method is suitable for real-time implementation, since it does not need a frame memory for iterative optimization. As a result, it can be applied to various consumer imaging devices, including mobile phone cameras, compact digital cameras, and computational cameras with coded color.

Design and Implementation of a Real-time Region Pointing System using Arm-Pointing Gesture Interface in a 3D Environment

  • Han, Yun-Sang;Seo, Yung-Ho;Doo, Kyoung-Soo;Choi, Jong-Soo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.290-293
    • /
    • 2009
  • In this paper, we propose a method to estimate pointing region in real-world from images of cameras. In general, arm-pointing gesture encodes a direction which extends from user's fingertip to target point. In the proposed work, we assume that the pointing ray can be approximated to a straight line which passes through user's face and fingertip. Therefore, the proposed method extracts two end points for the estimation of pointing direction; one from the user's face and another from the user's fingertip region. Then, the pointing direction and its target region are estimated based on the 2D-3D projective mapping between camera images and real-world scene. In order to demonstrate an application of the proposed method, we constructed an ICGS (interactive cinema guiding system) which employs two CCD cameras and a monitor. The accuracy and robustness of the proposed method are also verified on the experimental results of several real video sequences.

  • PDF

Noise Reduction for Photon Counting Imaging Using Discrete Wavelet Transform

  • Lee, Jaehoon;Kurosaki, Masayuki;Cho, Myungjin;Lee, Min-Chul
    • Journal of information and communication convergence engineering
    • /
    • v.19 no.4
    • /
    • pp.276-283
    • /
    • 2021
  • In this paper, we propose an effective noise reduction method for photon counting imaging using a discrete wavelet transform. Conventional 2D photon counting imaging was used to visualize the object under dark conditions using statistical methods, such as the Poisson random process. The photons in the scene were estimated using a statistical method. However, photons which disturb the visualization and decrease the image quality may occur in the background where there is no object. Although median filters are used to reduce the noise, the noise in the scene remains. To remove the noise effectively, our proposed method uses the discrete wavelet transform, which removes the noise in the scene using a specific thresholding method that utilizes photon counting imaging characteristics. We conducted an optical experiment to demonstrate the denoising performance of the proposed method.