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I. INTRODUCTION

Ghost imaging (GI), as a novel optical imaging technique, 

has been developed over the past two decades [1-7]. 

Different from classical optical imaging, GI requires two 

light beams: One is called the reference arm, which is 

recorded by a detector with spatial-resolution ability such 

as a charge-coupled device (CCD), while the other is the 

object arm, which is detected by a single-pixel detector 

(bucket detector) after the light interacts with the object to 

be measured. The object can be computationally imaged 

by correlating the detected data in the two arms. In 2008, 

Shapiro proposed a computational GI (CGI) technique that 

replaces the reference beam in the classical GI system with 

a virtual computational part [8]. Subsequently in 2009, 

Bromberg et al. designed an experimental system to verify 

the feasibility of CGI, in which a spatial light modulator 

(SLM) is used to generate a series of random intensity 

patterns as illuminations [9]. Owing to the imaging mecha-

nism of CGI, the retrieved image generally contains serious 

noise, which has become an obstacle in some practical 

applications, although many efforts such as compressive GI 

[10], differential GI [11], normalized GI [12], and iterative 

GI [13, 14] have been made to improve the signal-to-noise 

ratio (SNR).

Edge detection based on CGI has currently become a 

hot research topic. In 2015, Liu et al. first proposed an 

edge-detection method based on gradient GI (GGI) [15]. 

This method can extract the edge in a direction according 

to the gradient angle adopted in the random patterns in 

CGI. Based on GGI, Mao et al. recently proposed the 

speckle-shift GI (SSGI) to extract the edge without prior 

knowledge of an object [16]. These methods can bring 

great convenience in object recognition, but the noise is 

still difficult to remove, and will further affect the accuracy 

of recognition. To improve the quality of edge detection, 

Wang and Ren et al. have successively proposed subpixel- 

speckle-shifting ghost imaging [17] and difference Fourier 

single-pixel imaging [18], which can fully remove random 

noise from the imaging results, but the number of measure-
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ments should be double or even triple the resolution of the 

detected image.

In this paper, we propose a novel SSGI method that can 

effectively extract the edge of an unknown object. In this 

method, the illumination intensity patterns can be structured 

in a computer beforehand, and only two groups of intensity 

patterns are used to project the object. Compared tto the 

existing SSGI method, the imaging speed and quality will 

be improved. However owing to the imaging mechanism 

of GI, the imaging result generally contains serious noise. 

To solve this problem, a simple and effective denoising 

method for SSGI with a connected-region labeling (CRL) 

algorithm is further explored. First, two edge images of an 

unknown object are extracted according to SSGI. A 

threshold and the CRL algorithm are then used to remove 

noise from the imaging results in turn. This method can 

realize the image of an object with high quality, using 

fewer measurements. The organization of this paper is as 

follows. In Section II, the principle of the novel SSGI 

with the Sobel operator is introduced. In Section III, the 

steps of the denoising method with CRL are described 

specifically. Numerical simulation results are presented in 

Section IV, and finally we conclude this paper in Section V.

II. A NOVEL SSGI WITH THE SOBEL 

OPERATOR

In Ref. [16], the edge-detection methods using SSGI 

with the Laplacian operator, Standard operator, and Sobel 

operator have been demonstrated theoretically and experi-

mentally. The results show that SSGI with the Sobel 

operator is robust in noisy environments. However, the 

intensity patterns used to illuminate the object are divided 

into 8 groups. Only one eighth of the intensity patterns are 

used to detect the edge in a corresponding direction, so 

the clarity of the imaging result will be poor if the number 

of measurements is insufficient. Here we introduce a novel 

SSGI technique with the Sobel operator, in which the 

intensity patterns are divided into two groups, i.e.


          

        
 (1)

and


          

        
 (2)

where 
   and 

   are the horizontal and vertical 

gradient patterns computed from an arbitrarily selected 

random intensity pattern    ,    ⋯, and  is 

the number of measurements in the SSGI. All of these 

intensity patterns are computed and stored in the computer 

beforehand.

The setup for SSGI is schematically shown in Fig. 1. In 

the system, the series of structured patterns is generated by 

the computer-controlled digital micromirror device (DMD) 

and projected onto the object   . The modulated light 

is finally collected by a single-pixel (bucket) detector (BD) 

to form the measurement data, i.e. 
 and 

,




   (3)

and




   (4)

The horizontal and vertical edge of the object are 

imaged by correlating the detected data with the random 

intensity patterns, i.e.,



 





  




〈〉  〈

〉〈〉〈〉 (5)

and



 





  




〈〉  〈

〉〈〉〈〉 (6)

where 〈∙〉 denotes the mean of the elements. The edge 

of the object is obtained by

  
    

     (7)

Further explanation of the edge-imaging process is 

presented in the appendix. 

Compared to conventional SSGI [16], this method has 

two advantages. One is that the imaging speed will be 

increased, because the horizontal and vertical intensity 

patterns can be computed beforehand, and only two groups 

intensity patterns are used to illuminate the object; in 

conventional SSGI, eight groups of intensity patterns need 

to be generated by the DMD and projected onto the 

object. The other advantage is that the imaging result 
FIG. 1. Schematic diagram of the edge-detection system 

based on SSGI.
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may be clearer than that from SSGI with the same number 

of measurements. For example, 20,000 measurements are 

adopted in conventional SSGI, but only 2500 intensity 

patterns are used to extract the edge in one direction. In 

our method, the edge in the horizontal or vertical direction 

will be imaged by 10,000 measurements. Here, a binary 

image with 128 × 128 pixels (Fig. 2(a)) is adopted to verify 

the method’s performance by numerical simulations. For 

comparison, the edge extracted from the original image by 

Sobel operator is shown in Fig. 2(b). One of the intensity 

patterns in the horizontal and vertical directions computed 

from Eqs. (1) and (2) is presented in Figs. 2(c) and 2(d) 

respectively. The horizontal and vertical edges of the object 

are imaged and shown in Figs. 2(e) and 2(f) respectively. 

Combining the two edge images according to Eq. (7), the 

result is shown in Fig. 2(g). As can be seen from the 

results, the edge imaged with our method is clearer than 

that from the conventional SSGI (Fig. 2(h)).

III. DENOISING METHOD

Owing to the imaging mechanism of the speckle-pattern 

illumination, no matter for our method or the conventional 

SSGI, the detected results (Figs. 2(g) and 2(h)) generally 

contain serious noise, which may be an obstacle in some 

potential applications. Considering that the speckle noise is 

randomly distributed in the SSGI result, but the detected 

edge of the object is nearly fixed and constant, we therfore 

intend to reduce noise by comparing two SSGI results 


   and 

  . The flow chart for the denoising 

method is shown in Fig. 3. According to the edge-detection 

results, an appropriate threshold is first set as 

  (8)

where  and  respectively denote the mean and standard 

deviation of   . If 
  ≥ and 

  ≥, 

the position    is believed to be the detected edge; 

otherwise, it is speckle noise. The preprocessing result can 

be mathematically expressed as


   

  if 
 ≥ and 

 ≥

 Otherwise

(9)

where    is the sum of the two SSGI results 

   and   . Then the CRL, as a famous 

morphology algorithm [19, 20], is also used here to further 

reduce the small-speckle noise. We define the small-speckle 

area as   
max

. The noise-reduction result using CRL 

can be written as

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 2. Numerical simulation results for the novel and conventional SSGI techniques: (a) original image, (b) edge directly extracted 

from the object with the Sobel operator, (c) and (d) the horizontal and vertical intensity patterns, (e) and (f) the extracted horizontal 

and vertical edges, (g) and (h) the imaging results for the novel and conventional SSGI respectively.

FIG. 3. Flow chart for the denoising method.
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


     i f   
max


  

 (10)

where 
max

 is the largest connected region and  is a 

coefficient. In this method, the sparse matrix and Dulmage- 

Mendelsohn decomposition algorithm are used to label the 

largest connected region [21].

IV. NUMERICAL SIMULATIONS

In this section, we will verify the feasibility of our 

proposed method by numerical simulations. To evaluate 

the quality of the detected edge, in this paper the peak 

signal-to-noise ratio (PSNR) is used as a metric, and 

defined as

PSNRlg










×







 



′    








 (11)

where ′    and    denote the detected result and 

reference image respectively. × is the size of the image, 

and   represents the maximum grayscale value.

Apart from the binary image shown in Fig. 2(a), the 

grayscale image with 128 × 128 pixels shown in Fig. 4(a) is 

also adopted as the original object image in this simulation. 

The edge shown in Fig. 4(b) is directly extracted with the 

Sobel operator for comparison.

In the following simulations, 20,000 structured patterns 

are divided into two groups (i.e. 10,000 patterns in each 

group) to illuminate the object image, and each group will 

be used to generate a ghost image. Correlating the detected 

data with the structured patterns, the two edge images are 

generated by Eqs. (5)~(7) (i.e. the novel SSGI with the 

Sobel operator), and shown in Figs. 5(a), 5(b), 5(f) and 5(g) 

with PSNR = -2.18, -2.21, -6.11, and -6.09 dB respectively. 

As can be seen from the results, the edge looms through 

the speckle noise for both the binary and grayscale images. 

Because the noise is randomly distributed in the edge- 

detection results with the same probability, it will be tend 

to uniform in a superposition of the two results, which can 

be seen in Figs. 5(c) and 5(h). Subsequently using the 

threshold, the preprocessing results are obtained by Eq. (9) 

and shown in Figs. 5(d) and 5(i), respectively. Although 

most of the noise has been removed, some scattered noise 

still remains in the results. To further remove the small- 

speckle noise, the CRL algorithm is used here according 

to Eq. (10) for  = 0.01, and the results are shown in Figs. 

5(e) and 5(j) with PSNR= 19.54 and 8.48 dB, corresponding 

to the binary and grayscale image respectively.

Apart from binary and grayscale images, the method 

proposed in this paper is also suitable for color images, 

because a color image can be decomposed into red (R), 

green (G), and blue (B) components. The connected region 

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

FIG. 5. Numerical simulation results for our proposed method in this paper, for number of measurements M = 20000 and coefficient 

 = 0.01 in CRL.

(a) (b)

FIG. 4. (a) The other object image, and (b) its edge, directly 

extracted with the Sobel operator.
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is labeled in a binary image, so the image retrieved with 

SSGI should be binarized at first, and the final extracted 

edge is binary. Figures 6(a) and 6(b) respectively present a 

color image and its extracted edge with this proposed 

method. We can see that the result is similar to that for 

the grayscale image.

Recently, Wang et al. have proposed an edge-detection 

method based on subpixel-shifting ghost imaging (SPSGI) 

[17]. According to the orthogonality of the Walsh-Hadamard 

matrix, the edge of an unknown object can be obtained 

with high quality and resolution by correlating the detected 

data with the subpixel-shifted Walsh-Hadamard patterns. In 

addition, Ren et al. have also proposed another edge-detection 

method with difference Fourier single-pixel imaging (DFSI) 

[18]. These two methods can extract the edge of an object 

with high quality, but the number of measurements should 

be at least double the resolution of the detected image for 

SPSGI, and triple for DFSI. Here we also take Figs. 2(a) 

and 4(a) as examples to numerically simulate the SPSGI 

and DFSI techniques.

When 32,768 Walsh-Hadamard patterns and 49,152 

sinusoidal patterns are respectively used in SPSGI and 

DFSI, the edge is extracted clearly for both binary and 

grayscale images, as seen in Figs. 7(a)~7(d). However, 

when the number of measurements is insufficient, the 

imaging results blur. To intuitively observe the differences 

among the imaging results of these methods, 30,000 

structured patterns are adopted to detect the edge of the 

binary image, and the results are shown on the right side of 

Fig. 8. As can be seen, the result is overlapped for SPSGI 

(a) (b) (c) (d)

FIG. 7. Numerical simulation results for ((a) and (b)) SPSGI and ((c) and (d)) DFSI.

FIG. 8. The curves for PSNR varying with the number of measurements in SSGI, DFSI, SPSGI, and our proposed method, for the 

binary image.

(a) (b)

FIG. 6. Simulation result for a color image: (a) original image, 

(b) edge extracted with the proposed method.
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and blurred for DFSI. Here we only take the binary image 

as an example and test the PSNRs of the imaging results, 

varying with the number of measurements, for SSGI, 

DFSI, SPSGI, and our method proposed in this paper. The 

curves are shown in Fig. 8. As can be seen from the 

results, our proposed method can realize high imaging 

quality when fewer measurements are adopted, although it 

cannot completely remove noise from the detected edge.

V. CONCLUSION

In this paper we have proposed a novel SSGI technique 

to improve imaging speed and quality. Numerical simulations 

are carried out to verify its performance. However, owing 

to the imaging mechanism of SSGI, the results still contain 

serious noise. To solve the problem, we also explored a 

method to suppress the noise of SSGI results via CRL 

algorithms. In this method, two frame-edge-detection results 

are first generated by SSGI with the Sobel operator, and 

then a preprocessing step with a threshold and the CRL 

algorithm are applied in turn to reduce the noise. Compared 

to SPSGI and DFSI techniques, this method cannot 

completely remove noise from the detected edge, but it 

can realize high imaging quality with fewer measurements. 

Numerical simulations are carried out to verify the method’s 

feasibility and effectiveness. Actually, the method proposed 

in this paper is simple, and so will take little operation 

time. The disadvantage of this method is that the CRL is 

invalid for noise adhering to the edge; some other effective 

algorithms still need to be further investigated.
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APPENDIX

Here, we give a further explanation for the edge-extraction 

process as follows. According to Eq. (1), Eq. (3) can be 

rewritten as












    
      
     





 

(A1)

The average of all of the single-pixel detected data can 

be expressed as

〈〉




  






















    
      
     





 









 

(A2)

Thus, the formula for the horizontal edge, i.e. Eq. (5), 

can be further deduced by



  





  




⟨

⟩  






  






















    
     
     





 






  






















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where  denotes the image retrieved by CGI, and 

∇



   is the horizontal edge extracted by the Sobel 

operator. Therefore, the gradient operation for the 

illumination intensity patterns (Eq. (1)) is essentially 

equivalent to that for the captured images, so the 

horizontal edge of the object will be extracted from the 

horizontal intensity patterns 
 .

The vertical edge of the object can be extracted by the 

same principle, and is expressed as 
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    

     (A4)

∇



 

where ∇



   is the vertical edge extracted by the 

Sobel operator. From Eq. (A4), we know that the vertical 

edge of the object can also be extracted from the vertical 

intensity patterns 
 .

The edge of the object will be obtained from

  
   

     (A5)

REFERENCES

1. T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. 

Sergienko, “Optical imaging by means of two-photon quantum 

entanglement,” Phys. Rev. A 52, R3429-R3432 (1995).

2. R. S. Bennink, S. J. Bentley, and R. W. Boyd, ““Two-photon” 

coincidence imaging with a classical source,” Phys. Rev. 

Lett. 89, 113601 (2002).

3. A. Valencia, G. Scarcelli, M. D. Angelo, and Y. Shih, 

“Two-photon imaging with thermal light,” Phys. Rev. Lett. 

94, 063601 (2005).

4. X. F. Liu, X. H. Chen, X. R. Yao, W. K. Yu, G. J. Zhai, 

and L. A. Wu, “Lensless ghost imaging with sunlight,” Opt. 

Lett. 39, 2314-2317 (2014).

5. Z. Zhang, X. Ma, and J. Zhong, “Single-pixel imaging by 

means of Fourier spectrum acquisition,” Nat. Commun. 6, 

6225-6230 (2015).

6. L. Wang and S. M. Zhao, “Fast reconstructed and high- 

quality ghost imaging with fast Walsh-Hadamard transform,” 

Photonics Res. 4, 240-244 (2016).

7. W. Jue, Y. Renlong, X. Yu, S. Yanming, C. Yanru, and Z. 

Qi, “Ghost imaging with different speckle sizes of thermal 

light,” J. Opt. Soc. Korea 20, 8-12 (2016).

8. J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. 

A 78, 061802 (2008).

9. Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging 

with a single detector,” Phys. Rev. A 79, 053840 (2009).

10. O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive 

ghost imaging,” Appl. Phys. Lett. 95, 131110 (2009).

11. F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential 

ghost imaging,” Phys. Rev. Lett. 104, 253603 (2010).

12. B. Sun, S. S. Welsh, M. P. Edgar, J. H. Shapiro, and M. 

J. Padgett, “Normalized ghost imaging,” Opt. Express 20, 

16892-16901 (2012).

13. W. Wang, Y. P. Wang, J. Li, X. Yang, and Y. Wu, “Iterative 

ghost imaging,” Opt. Lett. 39, 5150-5153 (2014).

14. W. Wang, X. Hu, J. Liu, S. Zhang, J. Suo, and G. Situ, 

“Gerchberg-Saxton-like ghost imaging,” Opt. Express 23, 

28416-28422 (2015).

15. X. F. Liu, X. R. Yao, R. M. Lan, C. Wang, and G. J. 

Zhai, “Edge detection based on gradient ghost imaging,” 

Opt. Express 23, 33802-33811 (2015).

16. T. Mao, Q. Chen, W. He, Y. Zou, H. Dai, and G. Gu, 

“Speckle-Shifting ghost imaging,” IEEE Photonics J. 8, 

1-10 (2016).

17. L. Wang, L. Zou, and S. Zhao, “Edge detection based on 

subpixel-speckle-shifting ghost imaging,” Opt. Commun. 

407, 181-185 (2018).

18. H. Ren, S. Zhao, and J. Gruska, “Edge detection based on 

single-pixel imaging,” Opt. Express 26, 5501-5511 (2018).

19. F. Jiang, S. Zhang, S. Wu, Y. Gao, and D. Zhao, “Multi- 

layered gesture recognition with kinect,” J. Mach. Learn. 

Res. 16, 227-254 (2015).

20. X. Chen, Y. Wang, Y. Wang, M. Ma, and C. Zeng, 

“Quantized phase coding and connected region labeling for 

absolute phase retrieval,” Opt. Express 24, 28613-28624 

(2016).

21. M. B. Dillencourt, H. Samet, and M. Tamminen, “A general 

approach to connected-component labeling for arbitrary image 

representations,” J. ACM 39, 253-280 (1992).




