• Title/Summary/Keyword: image geometry

Search Result 534, Processing Time 0.024 seconds

Crack Growth Behaviors of Cement Composites by Fractal Analysis

  • Won, Jong-Pil;Kim, Sung-Ae
    • KCI Concrete Journal
    • /
    • v.14 no.1
    • /
    • pp.30-35
    • /
    • 2002
  • The fractal geometry is a non-Euclidean geometry which describes the naturally irregular or fragmented shapes, so that it can be applied to fracture behavior of materials to investigate the fracture process. Fractal curves have a characteristic that represents a self-similarity as an invariant based on the fractal dimension. This fractal geometry was applied to the crack growth of cementitious composites in order to correlate the fracture behavior to microstructures of cementitious composites. The purpose of this study was to find relationships between fractal dimensions and fracture energy. Fracture test was carried out in order to investigate the fracture behavior of plain and fiber reinforced cement composites. The load-CMOD curve and fracture energy of the beams were observed under the three point loading system. The crack profiles were obtained by the image processing system. Box counting method was used to determine the fractal dimension, D$_{f}$. It was known that the linear correlation exists between fractal dimension and fracture energy of the cement composites. The implications of the fractal nature for the crack growth behavior on the fracture energy, G$_{f}$ is apparent.ent.

  • PDF

Epipolar Geometry of Line Cameras Moving with Constant Velocity and Attitude

  • Habib, Ayman F.;Morgan, Michel F.;Jeong, Soo;Kim, Kyung-Ok
    • ETRI Journal
    • /
    • v.27 no.2
    • /
    • pp.172-180
    • /
    • 2005
  • Image resampling according to epipolar geometry is an important prerequisite for a variety of photogrammetric tasks. Established procedures for resampling frame images according to epipolar geometry are not suitable for scenes captured by line cameras. In this paper, the mathematical model describing epipolar lines in scenes captured by line cameras moving with constant velocity and attitude is established and analyzed. The choice of this trajectory is motivated by the fact that many line cameras can be assumed to follow such a flight path during the short duration of a scene capture (especially when considering space-borne imaging platforms). Experimental results from synthetic along-track and across-track stereo-scenes are presented. For these scenes, the deviations of the resulting epipolar lines from straightness, as the camera's angular field of view decreases, are quantified and presented.

  • PDF

An Efficient Rectification Algorithm for Spaceborne SAR Imagery Using Polynomial Model

  • Kim, Man-Jo
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.5
    • /
    • pp.363-370
    • /
    • 2003
  • This paper describes a rectification procedure that relies on a polynomial model derived from the imaging geometry without loss of accuracy. By using polynomial model, one can effectively eliminate the iterative process to find an image pixel corresponding to each output grid point. With the imaging geometry and ephemeris data, a geo-location polynomial can be constructed from grid points that are produced by solving three equations simultaneously. And, in order to correct the local distortions induced by the geometry and terrain height, a distortion model has been incorporated in the procedure, which is a function of incidence angle and height at each pixel position. With this function, it is straightforward to calculate the pixel displacement due to distortions and then pixels are assigned to the output grid by re-sampling the displaced pixels. Most of the necessary information for the construction of polynomial model is available in the leader file and some can be derived from others. For validation, sample images of ERS-l PRI and Radarsat-l SGF have been processed by the proposed method and evaluated against ground truth acquired from 1:25,000 topography maps.

Review of Soil Structure Quantification from Soil Images

  • Chun, Hyen-Chung;Gimenez, Daniel;Yoon, Sung-Won;Park, Chan-Won;Moon, Yong-Hee;Sonn, Yeon-Kyu;Hyun, Byung-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.3
    • /
    • pp.517-526
    • /
    • 2011
  • Soil structure plays an important role in ecological system, since it controls transport and storage of air, gas, nutrients and solutions. The study of soil structure requires an understanding of the interrelations and interactions between the diverse soil components at various levels of organization. Investigations of the spatial distribution of pore/particle arrangements and the geometry of soil pore space can provide important information regarding ecological or crop system. Because of conveniences in image analyses and accuracy, these investigations have been thrived for a long time. Image analyses from soil sections through impregnated blocks of undisturbed soil (2 dimensional image analyses) or from 3 dimensional scanned soils by computer tomography allow quantitative assessment of the pore space. Image analysis techniques can be used to classify pore types and quantify pore structure without inaccurate or hard labor in laboratory. In this paper, the last 50 years of the soil image analyses have been presented and measurements on various soil scales were introduced, as well. In addition to history of image analyses, a couple of examples for soil image analyses were displayed. The discussion was made on the applications of image analyses and techniques to quantify pore/soil structure.

Center Determination for Cone-Beam X-ray Tomography

  • Narkbuakaew, W.;Ngamanekrat, S.;Withayachumnankul, W.;Pintavirooj, C.;Sangworasil, M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1885-1888
    • /
    • 2004
  • In order to render 3D model of the bone, the stack of cross-sectional images must be reconstructed from a series of X-ray radiographs, served as the projections. In the case where the distance between x-ray source and detector is not infinite, image reconstruction from projection based on parallel-beam geometry provides an error in the cross-sectional image. In such case, image reconstruction from projection based on conebeam geometry must be exercised instead. This paper is devoted to the determination of detector center for SART conebeam Technique which is critically effect the performance of the resulting 3D modeling.

  • PDF

Incorporation of Scene Geometry in Least Squares Correlation Matching for DEM Generation from Linear Pushbroom Images

  • Kim, Tae-Jung;Yoon, Tae-Hun;Lee, Heung-Kyu
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.182-187
    • /
    • 1999
  • Stereo matching is one of the most crucial parts in DEM generation. Naive stereo matching algorithms often create many holes and blunders in a DEM and therefore a carefully designed strategy must be employed to guide stereo matching algorithms to produce “good” 3D information. In this paper, we describe one such a strategy designed by the use of scene geometry, in particular, the epipolarity for generation of a DEM from linear pushbroom images. The epipolarity for perspective images is a well-known property, i.e., in a stereo image pair, a point in the reference image will map to a line in the search image uniquely defined by sensor models of the image pair. This concept has been utilized in stereo matching by applying epipolar resampling prior to matching. However, the epipolar matching for linear pushbroom images is rather complicated. It was found that the epipolarity can only be described by a Hyperbola- shaped curve and that epipolar resampling cannot be applied to linear pushbroom images. Instead, we have developed an algorithm of incorporating such epipolarity directly in least squares correlation matching. Experiments showed that this approach could improve the quality of a DEM.

  • PDF

Time Reversal Focusing and Imaging of Point-Like Defects in Specimens with Nonplanar Surface Geometry

  • Jeong, Hyun-Jo;Lee, Hyun-Kee;Bae, Sung-Min;Lee, Jung-Sik
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.6
    • /
    • pp.569-577
    • /
    • 2010
  • Nonplanar surface geometries of components are frequently encountered in real ultrasonic inspection situations. Use of rigid array transducers can lead to beam defocusing and reduction of defect image quality due to the mismatch between the planar array and the changing surface. When a flexible array is used to fit the complex surface profile, the locations of array elements should be known to compute the delay time necessary for adaptive heam focusing. An alternative method is to employ the time reversal focusing technique that does not require a prior knowledge about the properties and structures of the specimen and the transducer. In this paper, a time reversal method is applied to simulate beam focusing of flexible arrays and imaging of point-like defects contained in specimens with nonplanar surface geometry. Quantitative comparisons are made for the performance of a number of array techniques in terms of the ability to focus and image three point-like reflectors positioned at regular intervals. The sinusoidal profile array studied here exhibits almost the same image quality as the flat, reference case.

Incorporating Recognition in Catfish Counting Algorithm Using Artificial Neural Network and Geometry

  • Aliyu, Ibrahim;Gana, Kolo Jonathan;Musa, Aibinu Abiodun;Adegboye, Mutiu Adesina;Lim, Chang Gyoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.12
    • /
    • pp.4866-4888
    • /
    • 2020
  • One major and time-consuming task in fish production is obtaining an accurate estimate of the number of fish produced. In most Nigerian farms, fish counting is performed manually. Digital image processing (DIP) is an inexpensive solution, but its accuracy is affected by noise, overlapping fish, and interfering objects. This study developed a catfish recognition and counting algorithm that introduces detection before counting and consists of six steps: image acquisition, pre-processing, segmentation, feature extraction, recognition, and counting. Images were acquired and pre-processed. The segmentation was performed by applying three methods: image binarization using Otsu thresholding, morphological operations using fill hole, dilation, and opening operations, and boundary segmentation using edge detection. The boundary features were extracted using a chain code algorithm and Fourier descriptors (CH-FD), which were used to train an artificial neural network (ANN) to perform the recognition. The new counting approach, based on the geometry of the fish, was applied to determine the number of fish and was found to be suitable for counting fish of any size and handling overlap. The accuracies of the segmentation algorithm, boundary pixel and Fourier descriptors (BD-FD), and the proposed CH-FD method were 90.34%, 96.6%, and 100% respectively. The proposed counting algorithm demonstrated 100% accuracy.

Pixel-Structured Scintillator with Polymeric Microstructures for X-Ray Image Sensors

  • Jung, Im-Deok;Cho, Min-Kook;Bae, Kong-Myeong;Lee, Sang-Min;Jung, Phill-Gu;Kim, Ho-Kyung;Kim, Sung-Sik;Ko, Jong-Soo
    • ETRI Journal
    • /
    • v.30 no.5
    • /
    • pp.747-749
    • /
    • 2008
  • We introduce a pixel-structured scintillator realized on a flexible polymeric substrate and demonstrate its feasibility as an X-ray converter when it is coupled to photosensitive elements. The sample was prepared by filling $Gd_2O_2S:Tb$ scintillation material into a square-pore-shape cavity array fabricated with polyethylene. For comparison, a sample with the conventional continuous geometry was also prepared. Although the pixelated geometry showed X-ray sensitivity of about 58% compared with the conventional geometry, the resolving power was improved by about 70% above a spatial frequency of 3 $mm^{-1}$. The spatial frequency at 10% of the modulation-transfer function was about 6 $mm^{-1}$.

  • PDF

3D Image Construction Using Color and Depth Cameras (색상과 깊이 카메라를 이용한 3차원 영상 구성)

  • Jung, Ha-Hyoung;Kim, Tae-Yeon;Lyou, Joon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • This paper presents a method for 3D image construction using the hybrid (color and depth) camera system, in which the drawbacks of each camera can be compensated for. Prior to an image generation, intrinsic parameters and extrinsic parameters of each camera are extracted through experiments. The geometry between two cameras is established with theses parameters so as to match the color and depth images. After the preprocessing step, the relation between depth information and distance is derived experimentally as a simple linear function, and 3D image is constructed by coordinate transformations of the matched images. The present scheme has been realized using the Microsoft hybrid camera system named Kinect, and experimental results of 3D image and the distance measurements are given to evaluate the method.