Browse > Article
http://dx.doi.org/10.3837/tiis.2020.12.014

Incorporating Recognition in Catfish Counting Algorithm Using Artificial Neural Network and Geometry  

Aliyu, Ibrahim (Department of Computer Engineering, Chonnam National University)
Gana, Kolo Jonathan (Department of Electrical and Electronics Engineering, Federal University of Technology)
Musa, Aibinu Abiodun (Department of Mechatronics Engineering, Federal University of Technology)
Adegboye, Mutiu Adesina (Department of Computer Engineering, Federal University Oye-Ekiti)
Lim, Chang Gyoon (Department of Computer Engineering, Chonnam National University)
Publication Information
KSII Transactions on Internet and Information Systems (TIIS) / v.14, no.12, 2020 , pp. 4866-4888 More about this Journal
Abstract
One major and time-consuming task in fish production is obtaining an accurate estimate of the number of fish produced. In most Nigerian farms, fish counting is performed manually. Digital image processing (DIP) is an inexpensive solution, but its accuracy is affected by noise, overlapping fish, and interfering objects. This study developed a catfish recognition and counting algorithm that introduces detection before counting and consists of six steps: image acquisition, pre-processing, segmentation, feature extraction, recognition, and counting. Images were acquired and pre-processed. The segmentation was performed by applying three methods: image binarization using Otsu thresholding, morphological operations using fill hole, dilation, and opening operations, and boundary segmentation using edge detection. The boundary features were extracted using a chain code algorithm and Fourier descriptors (CH-FD), which were used to train an artificial neural network (ANN) to perform the recognition. The new counting approach, based on the geometry of the fish, was applied to determine the number of fish and was found to be suitable for counting fish of any size and handling overlap. The accuracies of the segmentation algorithm, boundary pixel and Fourier descriptors (BD-FD), and the proposed CH-FD method were 90.34%, 96.6%, and 100% respectively. The proposed counting algorithm demonstrated 100% accuracy.
Keywords
Aquaculture; Catfish; Counting Algorithm; Digital Image Processing; ANN;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Kaewchote, S. Janyong, and W. Limprasert, "Image recognition method using Local Binary Pattern and the Random forest classifier to count post larvae shrimp," Agriculture and Natural Resources, vol. 52, no. 4, pp. 371-376, 2018.   DOI
2 S. M. D. Lainez and D. B. Gonzales, "Automated Fingerlings Counting Using Convolutional Neural Network," in Proc. of IEEE 4th International Conference on Computer and Communication Systems (ICCCS), pp. 67-72, 2019.
3 M. A. Adegboye, A. M. Aibinu, J. G. Kolo, I. Aliyu, T. A. Folorunso, and S. H. Lee, "Incorporating intelligence in fish feeding system for dispensing feed based on fish feeding intensity," IEEE Access, vol. 8, pp. 91948-91960, 2020.   DOI
4 O. M. Olaniyan, M. A. Adegboye, I. A. M. Bolaji Omodunbi, and T. Badmus, "A decision support system for automatic fertilizer application to tomato plants using artificial neural network," FUW Trends in Science & Technology, vol. 3, no. 2, pp. 600-604, 2018.
5 Kaper, "Computational Complexity Of Neural Networks," 2020. [Online]. Available: https://kasperfred.com/series/computational-omplexity/computational-complexity-of-neuralnetworks
6 H. Ritchie and M. Roser, "Seafood Production," OurWorldInData, 2019.
7 B. C. Loh, V. Raman, and P. H. Then, "First Prototype of Aquatic Tool Kit: Towards Low-Cost Intelligent Larval Fish Counting in Hatcheries," in Proc. of IEEE Ninth International Conference on Dependable, Autonomic and Secure Computing, pp. 192-195, Dec. 2011.
8 V. Raman, S. Perumal, S. Navaratnam, and S. Fazilah, "Computer Assisted Counter System for Larvae and Juvenile Fish in Malaysian Fishing Hatcheries by Machine Learning Approach," Journal of Computer, vol. 11, no. 5, pp. 423-431, 2016.
9 O. Oluwemimo and A. Damilola, "Socio-economic and policy issues determining sustainable fish farming in Nigeria," International Journal of Livestock Production, vol. 4, no. 1, pp. 1-8, 2013.   DOI
10 K. Potongkam and J. Miller, "Catfish Hatchery and Production Manual," National Special Programme for Food Security, 2006. [Online]. Available: https://docplayer.net/43237829-Catfishhatchery-and-production-manual.html
11 M. A. Adegboye, A. M. Aibinu, J. G. Kolo, A. M. Orire, T. A. Folorunso, and I. A. Aliyu, "Vibration Processing Analysis Approach to the Development of Fish Feeding Regime System, " Computing, Information System, Development Informatics & Allied Research Journal, vol. 8, no.1, pp. 141-148, Mar. 2017.
12 E. Daniel, "Quality fingerlings: Hatcheries to the rescue," The Nation, [Online]. Available: http://thenationonlineng. net/quality-fingerlings-hatcheries-to-the-rescue
13 E. Awalludin, T. Arsad, and H. W. Yussof, "A Review on Image Processing Techniques for Fisheries Application," in Proc. of Journal of Physics: Conference Series, vol. 1529, p. 052031, 2020.   DOI
14 J. Ni, Z. Khan, S. Wang, K. Wang, and S. K. Haider, "Automatic detection and counting of circular shaped overlapped objects using circular hough transform and contour detection," 2016 12th World Congress on Intelligent Control and Automation (WCICA), pp. 2902-2906, 2016.
15 V. Garcia, D. A. SantAna, V. A. G. Zanoni, M. C. B. Pache, M. H. Naka, P. L. F. Albuquerque, T. Lewandowski, A. D. S. Oliveira, J. Victor, A. Rozales, M. W. Ferreira, E. Q. A. Queiroz, J. C. M. Almanza, and H. Pistori, "A new image dataset for the evaluation of automatic fingerlings counting," Aquacultural Engineering, vol. 89, p. 102064, 2020.   DOI
16 FAO, "Mass production of fry and fingerlings of the African catfish clariasgariepinus," 2016. [Online]. Available: http://www.fao.org/docrep/field/003/ac182e/ac182e03.htm
17 T. W. Huang, J. N. Hwang, and C. S. Rose, "Chute based automated fish length measurement and water drop detection," in Proc. of 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1906-1910, May. 2016.
18 I. Aliyu, K. J. Gana, A. A. Musa, J. Agajo, A. M. Orire, F. T. Abiodun, and M. A. Adegboye, "A Proposed fish counting algorithm using image processing technique," ATBU Journal of Science and Technology and Education, vol. 5, no. 1, pp. 1-11, 2017.
19 R. Labuguen, E. J. P. Volante, A. Causo, R. Bayot, G. Peren, R. M. Macaraig, N. J. C. Libatique, and G. L. Tangonan, "Automated fish fry counting and schooling behavior analysis using computer vision," IEEE 8 th International Colloquium on Signal Processing and its Applications (CSPA), pp. 255-260, May 2012.
20 P. F. Newbury, P. F. Culverhouse, and D. A. Pilgrim, "Automatic fish population counting by artificial neural network," Aquaculture, vol. 133, no. 1, pp. 45-55, 1995.   DOI
21 S. Yada and H. Chen, "Weighing type counting system for seedling fry," Nippon Suisan Gakkaishi, vol. 63, no. 2, pp. 178-183, 1997.   DOI
22 Y. Duan, L. H. Stien, A. Thorsen, O . Karlsen, N. Sandlund, D. Li, Z. Fu, and S. Meier, "An automatic counting system for transparent pelagic fish eggs based on computer vision," Aquacultural Engineering, vol. 67, pp. 8-13, 2015.   DOI
23 M. O. Alver, T. Tennoy, J. A. Alfredsen, and G. O ie, "Automatic measurement of rotifer Brachionus plicatilis densities in first feeding tanks," Aquacultural engineering, vol. 36, no. 2, pp. 115-121, 2007.   DOI
24 J. Han, N. Honda, A. Asada, and K. Shibata, "Automated acoustic method for counting and sizing farmed fish during transfer using DIDSON," Fisheries Science, vol. 75, no. 6, pp. 1359-1367, 2009.   DOI
25 Y. Toh, T. Ng, and B. Liew, "Automated fish counting using image processing," in Proc. of 2009 International Conference on Computational Intelligence and Software Engineering, pp. 1-5, 2009.
26 X. Zheng and Y. Zhang, "A fish population counting method using fuzzy artificial neural network," in Proc. of 2010 IEEE International Conference on Progress in Informatics and Computing (PIC), pp. 225-228, 2010.
27 S. Luo, X. Li, D. Wang, J. Li, and C. Sun, "Automatic Fish Recognition and Counting in Video Footage of Fishery Operations," in Proc. of 2015 International Conference on Computational Intelligence and Communication Networks (CICN), pp. 296-299, 2015.
28 R. Lumauag and M. Nava, "Fish Tracking and Counting using Image Processing," in Proc. of IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM), pp. 1-4, 2018.
29 K. Friedland, D. Ama-Abasi, M. Manning, L. Clarke, G. Kligys, and R. Chambers, "Automated egg counting and sizing from scanned images: rapid sample processing and large data volumes for fecundity estimates," Journal of Sea Research, vol. 54, no. 4, pp. 307-316, 2005.   DOI