Browse > Article
http://dx.doi.org/10.7745/KJSSF.2011.44.3.517

Review of Soil Structure Quantification from Soil Images  

Chun, Hyen-Chung (National Academy of Agricultural Science, Rural Development Administration)
Gimenez, Daniel (Department of Environmental Sciences, Rutgers, The State University of New Jersey)
Yoon, Sung-Won (National Institute for Agronomic Research)
Park, Chan-Won (National Academy of Agricultural Science, Rural Development Administration)
Moon, Yong-Hee (National Academy of Agricultural Science, Rural Development Administration)
Sonn, Yeon-Kyu (National Academy of Agricultural Science, Rural Development Administration)
Hyun, Byung-Keun (National Academy of Agricultural Science, Rural Development Administration)
Publication Information
Korean Journal of Soil Science and Fertilizer / v.44, no.3, 2011 , pp. 517-526 More about this Journal
Abstract
Soil structure plays an important role in ecological system, since it controls transport and storage of air, gas, nutrients and solutions. The study of soil structure requires an understanding of the interrelations and interactions between the diverse soil components at various levels of organization. Investigations of the spatial distribution of pore/particle arrangements and the geometry of soil pore space can provide important information regarding ecological or crop system. Because of conveniences in image analyses and accuracy, these investigations have been thrived for a long time. Image analyses from soil sections through impregnated blocks of undisturbed soil (2 dimensional image analyses) or from 3 dimensional scanned soils by computer tomography allow quantitative assessment of the pore space. Image analysis techniques can be used to classify pore types and quantify pore structure without inaccurate or hard labor in laboratory. In this paper, the last 50 years of the soil image analyses have been presented and measurements on various soil scales were introduced, as well. In addition to history of image analyses, a couple of examples for soil image analyses were displayed. The discussion was made on the applications of image analyses and techniques to quantify pore/soil structure.
Keywords
Soil structure; Pore geometry; Computer tomography; Image analysis; Fractal; Entropy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Pozdnyakova, L, D. Gimenez, and P.V. Oudemans. 2005. Spatial analysis of cranberry yield at three scales. Agron. J. 97(1):49-57.   DOI   ScienceOn
2 Rachman, A., S. H. Anderson, and C. J. Gantzer. 2005. Computedtomographic measurement of soil macroporosity parameters as affected by stiff-stemmed grass hedges. Soil Sci. Soc. Am. J. 69(5):1609-1616.   DOI
3 Ringrose-Voase, A.J. and C. Nys. 1990. One-dimensional image analysis of soil structure. II. Interpretation of parameters with respect to four forest soil profiles. J. Soil Sci. 41:513-527.   DOI
4 Russell, M.B. 1941. Pore-size distribution as a measure of soil structure. Soil Sci. Soc. Am. 6:108-112.
5 Serra, J. 1988. Image Analysis and Mathematical Morphology. Vol. 1. Academic press.
6 Shannon, C.E. 1948. A mathematical theory of communication. Bell. Syst. Tech. J. 27:379-656.   DOI
7 Smetten, K.R.J. and N. Collis-George. 1985. Statistical characterization of soil biopores using a soil peel method. Geoderma 36:27-36.   DOI   ScienceOn
8 Splajt, T., G. Ferrier, and L.E. Frostick. 2003. Application of ground penetrating radar in mapping and monitoring landfill sites. Environ. Geol. 44:963-967.   DOI   ScienceOn
9 Taina, I.A., R.J. Heck, and T.R. Elliot. 2008. Application of X-ray computed tomography to soil science: A literature review. Can. J. Soil Sci. 88(1):1-20.   DOI   ScienceOn
10 Wittmus, H.D. and A.P. Mazurak. 1958. Chemical and physical properties of soil aggregates in a Brunizem soil. Soil Science Society of America Proceedings 22:1-5.   DOI
11 Wong, R.C.K. and R. Wibowo. 2000. Tomographic evaluation of air and water flow patterns in soil column. Geotech. Test. J. 23(4):413-422.   DOI   ScienceOn
12 Treseder, K.K. and M.F. Allen. 2000. Mycorrhizal fungi have a potential role in soil carbon storage under elevated $CO_{2}$ and nitrogen deposition. New Phytol. 147:189-200.   DOI   ScienceOn
13 Talukdar, M.S., O. Torsaeter, M.A. Ioannidis, and J.J. Howard. 2002. Stochastic reconstruction, 3D characterization and network modeling of chalk. J. Petrol. Sci. Eng. 35(1-2):1-21.   DOI
14 Tarquis, A.M., K.J. McInnes, J.R. Keys, A. Saa, M.R. Garcia, and M.C. Diaz. 2006. Multiscaling analysis in a structured clay soil using 2D images, J. Hydrol. 322:236-246.   DOI   ScienceOn
15 Tennekoon, L., M.C. Boufadel, D. Lavallee, and J. Weaver. 2003. Multifractal anisotropic scaling of the hydraulic conductivity. Water Resour. Res. 39(7):1193.
16 VandenBygaart, A.J. and R. Protz. 1999. The representative elementary area REA in studies of quantitative soil micromorphology. Geoderma. 89:333-346.   DOI   ScienceOn
17 Moran, C.J. and A.B. McBratney. 1992. Acquisition and analysis of three component digital images of soil pore structure. I. Method. J. Soil Sci. 43:541-549.   DOI
18 Nunan, N., K. Ritz, M. Rivers, D.S. Feeney, and I.M. Young. 2006. Investigating microbial micro-habitat structure using X-ray computed tomography, Geoderma. 133:398-407.   DOI   ScienceOn
19 Oleschko, K., F. Brambila, F. Aceff, and L.P. Mora. 1997. From fractal analysis along a line to fractals on the plane. Soil Till. Res. 45:389-406.
20 Oleschko, K., G. Korvin, A.S. Balankin, R.V. Khachaturov, L. Flores, B. Figueroa, J. Urrutia, and F. Brambila. 2002. Fractal Scattering of Microwaves from Soils. Phys. Rev. Lett. 89(18): 188501 1-4.   DOI
21 Olson, R., H. Nariya, K. Yokota, Y. Kamio, and E. Gouaux, 1999. Crystal structure of Staphylococcal LukF delineates conformational changes accompanying formation of a transmembrane channel, Nature Struct. Biol. 6:134-140.   DOI   ScienceOn
22 Perfect, E. and B.D. Kay. 1995. Applications of fractals in soil and tillage research: A review. Soil Till. Res. 32(102):1-20.
23 Pierret, J., S.O. Prasher, A. Kantzas, and C. Langford. 1999. Threedomensional quantification of macropore networks in undisturbed soil cores. Soil Sci. Soc. Am. J. 63:1530-1543.   DOI
24 Yelshin, A. 1996. On the possibility of using information entropy as a quantitative description of porous media structural characteristics. J. Membrane Sci. 117:279-289.   DOI
25 Young, I.M. and J.W. Crawford. 1992. The analysis of fracture profiles of soil using fractal geometry. Aust. J. Soil Res. 30: 291-295.   DOI
26 Young, I.M., J.W. Crawford, and C. Rappoldt. 2001. New methods and models for characterizing structural heterogeneity of soil. Soil Till. Res. 61:33-45.   DOI
27 Perret, J.S., S.O. Prasher, and A.R. Kacimov. 2003. Mass fractal dimension of soil macropores using computed tomography: from the box-counting to the cube-counting algorithm. Eur. J. Soil Sci. 53(3):569-579.
28 Peth, S., R. Horn, F. Beckmann, T. Donath, J. Fischer, A.J.M. Smucker. 2008. Three-dimensional quantification of intra-aggregate pore-space features using synchrotron-radiation-based microtomography. Soil Sci. Soc. Am. J. 72(4):897-907.   DOI   ScienceOn
29 Pierret A, C.J. Moran, and C. Doussan. 2005. Conventional detection methodology is limiting our ability to understand the roles and functions of fine roots. New Phytol 166:967-980.   DOI   ScienceOn
30 Pohlmann, K., A. Hassan, and J. Chapman. 2000. Description of hydrogeologic heterogeneity and evaluation of radionuclide transport at an underground nuclear test. J. Contam. Hydrol. 44:353-386.   DOI
31 Posadas, A.N.D., D. Gimenez, M. Bittelli, C.M.P. Vaz, and M. Flury. 2003. Multifractal characterization of soil particle-size distributions. Soil Sci. Soc. Am. J. 65(5):1361-1367.
32 Kaluarachchi, J., V. Cvetkovic, and S. Berglund. 2000. Stochastic analysis of oxygen- and nitrate-based biodegradation of hydrocarbons in aquifers. J. Contam. Hydrol. 41:335-365.   DOI
33 Karlen, D.L. 2002. Structure, plant establishment and. pp 1269- 1275. In: Lal, R. (ed). Encyclopedia of Soil Science. Marcel Dekker, Inc.
34 Kay, B.D. A.P. da Silva, and J.A. Baldock. 1997. Sensitivity of soil structure to changes in organic carbon content: Predictions using pedotransfer functions. Can. J. Soil Scl. 77(4):655-667.   DOI   ScienceOn
35 Keith, C.C. and G.D. Buchan. 2002. Porosity and pore size distribution. In: Lal, R. (ed). Encyclopedia of Soil Science. Marcel Dekker, Inc.
36 Kirchhof, G. and H. Daniel. 2003. A technique to assess smallscale heterogeneity of chemical properties in soil aggregates. Aust. J. Soil Rres. 41:919-932.   DOI   ScienceOn
37 Liu, H.H. and F.J. Molz. 1997. Multifractal analyses of hydraulic conductivity distributions. Water Resour. Res. 33(11):2483- 2488.   DOI   ScienceOn
38 Kravchenko, A.N. 2008. Stochastic simulations of spatial variability based on multifractal characteristics. Vadose Zone J. 7(2): 521-524.   DOI
39 Kutilek, M. and D.R. Nielsen. 1994. Soil Hydrology: Geoecology Textbook. Cantena Verlag. Cremlinggen-Destedt, Germany.
40 Lin, T.L. and L.W. Hourng. 2005. Determination of applicable local porosity distributions in a powder bed by the maximum entropy method. Adv. Powder Technol. 16(3):231-246.   DOI   ScienceOn
41 Luo, L.F., H. Lin, and P. Halleck. 2008. Quantifying soil structure and preferential flow in intact soil using x-ray computed tomography. Soil Sci. Soc. Am. J. 72(4):1058-1069.   DOI
42 Masad, E. and B. Muhunthan. 1997. Three-dimensional characterization and simulation of anisotropic soil fabric. J. Geotech. And Geoenvir. Engrg. 126(3):199-207.
43 McBratney, A.B., C.J. Moran, J.B. Stewart, S.R. Cattle, and A.J. Koppi. 1992. Modifications to a method of rapid assessment of soil macropore structure by image analysis. Geoderma. 53: 255-274.   DOI   ScienceOn
44 Monga, O., M. Bousso, P. Garnier, and V. Pot. 2008. 3D geometric structures and biological activity: Application to microbial soil organic matter decomposition in pore space. Ecol. Model. 216(3-4):291-302.   DOI   ScienceOn
45 Bentz, D.P. and N.S. Martys. 1994. Hydraulic radius and transport in reconstructed model three-dimensional porous media. Transport Porous Med. 17:221-238.   DOI   ScienceOn
46 Holden, N.M. 1995. Temporal variation in ped shape in an old pasture soil. Catena. 24:1-11.   DOI   ScienceOn
47 Horgan, G.W. 1998. Mathematical morphology of analyzing soil structure from images. Eur. J. Soil Sci. 49:161-173.   DOI   ScienceOn
48 Huisman, J.A., J.J.J.C. Snepvangers, W. Bouten, and G.B.M. Heuvelink. 2002. Mapping spatial variation in surface soil water content: comparison of ground-penetrating radar and time domain reflectometry. J. Hydrol. 269:194-207.   DOI
49 Biswal, B, C. Manwart, and R. Hilfer. 1998. Three-dimensional local porosity analysis of porous media. Physica A. 255 (3-4): 221-241.   DOI
50 Boger, F., J. Feder, T. Jossang, and R. Hilfer. 1992. Microstructural sensitivity of local porosity distributions. Physica A. 187:55-70.   DOI
51 Boix-Fayos, C., A. Calvo-Cases, A.C. Imeson, and M.D. Soriano- Soto. 2001. Influence of soil properties on the aggregation of some Mediterranean soils and the use of aggregate size and stability as land degradation indicators. Catena. 44:47-67.   DOI   ScienceOn
52 Brady, N.C. and R.R. Weil. 2000. The nature and properties of soils. 12th edition. Prentice Hall. Upper Saddle River, New Jersey.
53 Capowiez, Y., P. Renault, and L. Belzunces, 2001. Three-dimensional trajectories of 60Co-labelled earthworms in artificial cores of soil. Eur. J. Soil Sci. 52:365-375.   DOI   ScienceOn
54 Capowiez, Y., A. Pierret, and C.J. Moran. 2003. Characterisation of the three dimensional structure of earthworm burrow systems using image analysis and mathematical morphology. Biol. Fertil. Soils 38:301-310.   DOI   ScienceOn
55 Chatzis, I. and F.A.L. Dullien, 1975. Modelling pore structure by 2-D and 3-D networks with application to sandstones, J. Can. Pet. Technol. 16(1):97-108.
56 Dathe, A., S. Eins, J. Niemeyer, and G. Gerold. 2001. The surface fractal dimension of the soil-pore interface as measured by image analysis. Geoderma, 103:203-229.   DOI
57 Chun, H.C., D. Gimenez, and S.W. Yoon. 2008. Morphology, lacunarity and entropy of intra-aggregate pores: Aggregate size and soil management effects. Geoderma. 146(1-2):83-93.   DOI   ScienceOn
58 Cıslerova, M. and J. Votrabova. 2002. CT derived porosity distribution and flow domains. J. Hydrol. 267:186-200.   DOI   ScienceOn
59 Crawford, J.W., R. Karl, and I.M. Young. 1993. Quantification of fungal morphology, gaseous transport and microbial dynamics in soil: an integrated framework utilizing fractal geometry. Geoderma. 56:157-172.   DOI   ScienceOn
60 Dexter, A.R. 1976. Internal structure of tilled soil. J. Soil Sci. 27:267-278.   DOI
61 Gouyet, J.G. 1996. Physics and Fractal Structures. Springer, New York.
62 Bartoli, F., V. Genevois-Gomendy, V. Royer, S. Niquet, H. Vivier, and R. Grayson. 2005. A multiscale study of silty soil structure. Eur. J. Soil Sci. 56(2):207-223.   DOI   ScienceOn
63 Andraud, C., A. Beghdadi, and J. Lafait. 1994. Entropic analysis of random morphologies. Physica A. 207:208-212.   DOI   ScienceOn
64 Andraud, C., A. Beghdadi, E. Haslund, J. Lafait, and B. Virgin. 1997. Local entropy characterization of correlated random microstructures. Physica A. 235:307-318.   DOI
65 Bastardie. F, Y. Capowiez, J.R. de Dreuzy, and D. Cluzeau. 2003. X-ray tomographic and hydraulic characterization of burrowing by three earthworm species in repacked soil cores. Appl. Soil Ecol. 24(1):3-16.   DOI   ScienceOn
66 Bear, Jacob. 1974. Dynamics of fluids in porous media. Dover Publications, Inc., New York.
67 Beghdadi, A., C. Andraud, J. Lafait, J. Peiro, and M. Perreau. 1993. Entropic and multifractal analysis of disordered morphologies. Fractals 1:671-679.   DOI
68 Dexter, A.R. and I. Hakansson. 1989. Internal micro-structure of soil clods measured by fracture surface analysis. Swed. J. Agr. Res. 19:77-83.
69 Dexter, A.R. 1985. Shapes of aggregates from tilled layers of some dutch and Australian soils. Geoderma. 35:91-107.   DOI   ScienceOn
70 Dexter, A.R. 1988. Advances in characterization of soil structure. Soil Till. Res. 11:199-238.   DOI   ScienceOn
71 Dexter, A.R. 2002. Soil structure: the key to soil function. pp 57-70. In: Pagliai, M. and R. Jones (eds). Sustainable Land Management-Environmental Protection, A Soil Physical Approach. IUSS.
72 Edwards, W.M., M.J. Shipitalo, and L. D. Norton. 1988. Contribution of macroporosity to infiltration into a continuous corn notilled watershed: implications for contaminant movement. J. Contam. Hydrol. 3:193-205.   DOI   ScienceOn
73 Edwards, W.M., M.J. Shipitalo, L.B. Owens, and L. D. Norton. 1990. Effects of lumbricus terrestris L. burrows on hydrology of continuous no-till corn fields. Geoderma. 46:73-84.   DOI   ScienceOn
74 Fara, H.D. and A.E. Scheidegger. 1961. Statistical geometry of porous media. J. Geophys. Res. 66(10):3279-3285.   DOI
75 Fatt, I. 1956. The network model of porous media, I: Capillary pressure characterizations. Trans. AIME. 207:144.
76 Gibson, J.R., H. Lin, and M.A. Burns. 2006. A comparison of fractal analytical methods on 2- and 3-dimensional computed tomographic scans of soil aggregates. Geoderma. 134:335-348.   DOI
77 Gimenez, D., J. Karmon, A. Posadas, and R. Shaw. 2002. Fractal dimensions of mass estimated from intact and eroded soil aggregates. Soil Till. Res. 64:165-172.   DOI