• Title/Summary/Keyword: image detector

Search Result 918, Processing Time 0.031 seconds

A Study on Image Resolution Increase According to Sequential Apply Detector Motion Method and Non-Blind Deconvolution for Nondestructive Inspection (비파괴검사를 위한 검출기 이동 방법과 논블라인드 디컨볼루션 순차 적용에 따른 이미지 해상도 증가 연구)

  • Soh, KyoungJae;Kim, ByungSoo;Uhm, Wonyoung;Lee, Deahee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.609-617
    • /
    • 2020
  • Non-destructive inspection using X-rays is used as a method to check the inside of products. In order to accurately inspect, a X-ray image requires a higher spatial resolution. However, the reduction in pixel size of the X-ray detector, which determines the spatial resolution, is time-consuming and expensive. In this regard, a DMM has been proposed to obtain an improved spatial resolution using the same X-ray detector. However, this has a limitation that the motion blur phenomenon, which is a decrease in spatial resolution. In this paper, motion blur was removed by applying Non-Blind Deconvolution to the DMM image, and the increase in spatial resolution was confirmed. DMM and Non-Blind Deconvolution were sequentially applied to X-ray images, confirming 62 % MTF value by an additional 29 % over 33 % of DMM only. In addition, SSIM and PSNR were compared to confirm the similarity to the 1/2 pixel detector image through 0.68 and 33.21 dB, respectively.

A Watermark Embedding Technique for Still Images Using Cross-Reference Points (교차 참조 점을 이용한 정지영상의 워터마크 삽입기법)

  • Lee, Hang-Chan
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.4
    • /
    • pp.165-172
    • /
    • 2006
  • In this paper we present a technique for detecting cross-reference points that allows improving watermark detect-ability. In general, Harris detector is commonly used for finding salient points. Harris detector is a kind of combined corner and edge detector which is based on neighboring image data distribution, therefore it has some limitation to find accurate salient points after watermark embedding or any kinds of digital attacks. The new method proposed in this paper used not data distribution but geometrical structure of a normalized image in order to avoid pointing error caused by the distortion of image data. After normalization, we constructed pre-specified number of virtual lines from top to bottom and left to right, and several of cross points were selected by a random key. These selected points specify almost same positions with the accuracy more than that of Harris detector after digital attacks. These points were arranged by a random key, and blocks centered in these points were formed. A reference watermark is formed by a block and embedded in the next block. Because same alteration is applied to the watermark generated and embedded blocks. the detect-ability of watermark is improved even after digital attacks.

Simulation of amorphous selenium considering diffraction and interference models (간섭과 회절 모델을 고려한 비정질 셀레늄(a-Se) 시뮬레이션)

  • Kim, Si-hyung;Song, Kwang-soup
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.997-999
    • /
    • 2012
  • Digital X-ray image detector is widely used for radiodiagnosis. Amorphous selenium has been received attention as one of the major material that confirmed photoconductor of direct methode detector. We analysis the photocurrent using 2-dimensional device simulator when blue-ray (${\lambda}=486nm$) is irradiated and high voltage is biased. We evaluate electron-hole generation rate, electron-hole recombination rate, and electron/hole distribution in the amorphous selenium. This simulation methode is helpful to the analysis of digital X-ray image detector. We expect that many applications will be developed in digital X-ray image detector using 2-dimensional device simulator.

  • PDF

Imaging Characteristics of Digital Chest Radiography with an Amorphus Silicon Flat Panel Detectors (비정질 평판형 측정기를 이용한 디지털 방사선 영상의 특징)

  • Jeong, Hoi-Woun;Kim, Jung-Min;Jeong, Man-Hee;Im, Eun-Kyung
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.8 no.1
    • /
    • pp.27-32
    • /
    • 2006
  • The rapid development in digital acquisition technology in radiography has not been accompanied by information regarding optimum radiolographic technique for use with an amorphus silicon flat panel detector. The purpose of our study was to compared imaging characteristics and image quality of an amorphus silicon flat panel detectors for digital chest radiography. All examinations were performed by using an amorphus silicon flat panel detector. Chest radiographs of an chest phantom were obtained with peak kilovoltage values of 60$\sim$150 kVp. Published data ell the effect of x-ray beam energy on imaging characteristics and image qualify when using an amorphus silicon flat panel detector. It is important that radiographers are aware of optimum kVp selection for an amorphus silicon flat panel detector system, particularly for the commonly performed chest examination.

  • PDF

A Improved Scene based Non-uniformity Correction Algorithm for Infrared Camera

  • Hyun, Ho-Jin;Choi, Byung-In
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.1
    • /
    • pp.67-74
    • /
    • 2018
  • In this paper, we propose an efficient scene based non-uniformity correction algorithm which performs the offset correction using the uniform obtained from input scenes for Infrared camera. In general, pixel outputs of a infrared detector can not be uniform. Therefore, the non-uniformity correction procedure need to be performed to make the image outputs uniform. A typical non-uniformity correction method uses a black body at the laboratory to obtain the output of the infrared detector's pixels for two temperatures, HOT and COLD, and calculates the non-uniformity correction parameters. However, output characteristics of the Infrared detector changes while the Infrared camera is operated, the fixed pattern noise of the Infrared detector and dead pixels are generated. To remove the noise, the offset correction is generally performed. The offset correction procedure usually need the additional device such as a thermo-electric cooler, shutter, or non-uniformity correction lens. Therefore, we introduce a general scene based non-uniformity correction technique without additional equipment, and then we propose an improved non-uniformity correction algorithm based on image to solve the problem of the existing technique.

Anti-Forensic Against Double JPEG Compression Detection Using Adversarial Generative Network (이중압축 검출기술에 대한 GAN 기반 안티 포렌식 기술)

  • Uddin, Kutub;Yang, Yoonmo;Oh, Byung Tae
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2019.11a
    • /
    • pp.58-60
    • /
    • 2019
  • Double JPEG compression detection is one of the most important ways of exposing the integrity of the JPEG image in image forensics. Several methods have been proposed for discriminating against the double JPEG image. In this paper, we propose a new method for restoring the JPEG compressed image and making the detector confused by introducing a Generative Adversarial Network (GAN). First, a generator network is designed for restoring the JPEG compressed image and analyzed the quality. Then, the restored image is tested with the double compression detector for evaluating the robustness of the proposed GAN model. The detection accuracy reduces from 98% to 58%.

  • PDF

A Study on the Secondary Electron Detector for use in Scanning Electron Microscope (SEM용 전자 검출기의 설계 및 제작)

  • Lee SangUk;Jeon Jong Up;Park KiTae;Park Kyu Yeol
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.9-14
    • /
    • 2005
  • The nature of the signals collected by an SEM(Scanning Electron Microscope) in order to form images are all dependent on the detector used to collect them, and the quality of an acquired image is strongly influenced by detector performance. Therefore, the development of detector with high performance is very important in pulling up the resolution of SEM This study presents the secondary electron detector for use in scanning electron microscope, electric circuit and I/V conversion circuit for driving that detector.

  • PDF

Effectiveness Evaluation of Scanogram Using Longbone Detector (Longbone 검출기를 이용한 Scanogram의 유효성 평가)

  • Jang, Su-han;Heo, Ji-eun
    • Journal of radiological science and technology
    • /
    • v.43 no.4
    • /
    • pp.235-242
    • /
    • 2020
  • Scanogram is that combine several practical images into one image to observation. So it is an important consideration in many clinical situation such as iliac measurement, leg alignment measurement and Scoliosis. Currently, scanogram examinations are mainly conducted for children and elderly patients. In this study, in order to apply the longbone detector to children or elderly patients who are difficult to cooperate with, we compared the longbone detector from D equipment with the G equipment discovery 656 Puls equipment in reproducibility of images, distribution of irradiation dose, scattering dose, irradiation time and image acquisition time. D equipment took more than twice as much time as G equipment. The scattered dose generated about 50% more G equipment than D equipment. In the whole spine scanogram and the measurement length of the lower leg, D equipment was also measured longer than G equipment. However, both methods did not show much difference from the CT scanogram, so there was no problem in measurement. The height of the thyroid radiation dose of G equipment was produced more radiation than D equipment. However, the longbone detector deviated from the x-ray center line relative to the tube rotation method, and was measured lower by the directionality of the measuring instrument, so that the error could not be corrected. In the conclusion of study, using the longbone detector is excellent for applying to children or elderly patients to reduce scattering dose. However, using CR may be useful to normal patients. Because, the image quality may deteriorate due to an imbalance of dose difference in thickness depending on the body part. So, it is useful to using a compensation filter or tube rotation method when we take a whole spine scanogram.

A Study on Distortion and Dose of Images in Mobile Radiography (이동형 방사선검사에서 영상의 왜곡과 선량에 관한 연구)

  • Song, Hyeon-Seok;Lim, Cheong-Hwan;Jung, Hong-Ryang;Kim, Jong-Seong;Kim, Yeong-Ran;Jeong, Sung-Hun
    • Journal of radiological science and technology
    • /
    • v.45 no.4
    • /
    • pp.305-312
    • /
    • 2022
  • The proportion and testing of portable radiation tests, which are limited at the request of the doctor, are gradually increasing only for patients in emergency situations and difficulties in moving. However, as there are many limiting factors compared to fixed devices, this study intends to measure and analyze the distortion of images according to the angle of the detector and the change in dose according to the position of the subject. For distortion experiments using a mobile radiation generator used in Hospital A, the SID was tilted by 110 cm, 14"×17" wireless FPD detector to 0°, -5°, -10°, -15°, -20°, and -35° to measure the change in area. The dose according to the location of the detector was analyzed on average by measuring the central dose at 110 cm of the SID and measuring the dose of 9 locations three times each. The analysis result of distortion by location according to the angle of the detector showed a statistically significant difference (f=58.74, p<0.000). Therefore, it can be seen that the angle of the detector and the tube is closely related to the distortion of the image. The difference in dose by location of the detector increased with respect to the center - pole, and decreased with the + pole. Tests using mobile radiation generators will require careful efforts by clinicians to position patients in the center of the detector for accurate diagnosis, and efforts will be made to level the angle between the mobile radiation generators and the detector.

Study on the Exposure Dose(mAs) and acquisition Image set up Density Display and Sensitivity of control Panel for the Digital Flat-Panel-Detector (디지털 평판형 검출기에서 Control Panel의 Density Display와 Sensitivity 설정이 조사선량(mAs)과 획득영상에 미치는 영향에 관한 연구)

  • Kim, Byung-Ki;Kim, Sang-Keun;Cha, Seon-Hwa;Choi, Jun-Gu;Lee, Jun;Kim, Min-Woo;Kim, Sun-Bae;Kim, Gyeong-Sun
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.9 no.2
    • /
    • pp.17-21
    • /
    • 2007
  • The purpose to recognize change of average pixel value of acquisition image by control panel's density and right set up method of speed (sensitivity) and exposure dose(mAs) change that dose in purpose digital flatpanel-detector. X -ray generator DHF-158H2(Hitachi, Japan). Detector CXDI 4OG(Canon, Japan), 12 : 1 grid and exposure ray 135 kVp, 250 mA, 10 ms. focus-detector distance 180 cm and used AEC mode. DICOM reflex analysis program used image J that is digital reflex analysis program that offer in United States America National Health Center(National Institutes of Health : NlH) phantom used chest phantom(Anthromorphic : Flukebrome.medicaI USA). An experiment chest phantom that consist by formation equivalence material use because density value( -3${\sim}$+3) in X-ray control panel and seep that is speed step(slow, medium, fast) each control experimentalize. image analysis reflex neted through an experiment using image j each image compare. These was change in dose according to slow, medium, fast and density's change in an experiment result. According to detector sensitivity and density condition set, dose was relationship dissimilarity 500% from 200%. The dose came highest when is density +3 to slow. and dose more increases gray scale's extent could know that rise. Could know whether how equipment set is important through this experiment. cause of disease which change by digital radiography system forward is thought to increase more, it is considered that suitable education by this and continuous interest about equipment need absolutely.

  • PDF