• Title/Summary/Keyword: image acquisition

Search Result 1,319, Processing Time 0.027 seconds

A Wafer Pre-Alignment System Using One Image of a Whole Wafer (하나의 웨이퍼 전체 영상을 이용한 웨이퍼 Pre-Alignment 시스템)

  • Koo, Ja-Myoung;Cho, Tai-Hoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.3
    • /
    • pp.47-51
    • /
    • 2010
  • This paper presents a wafer pre-alignment system which is improved using the image of the entire wafer area. In the previous method, image acquisition for wafer takes about 80% of total pre-alignment time. The proposed system uses only one image of entire wafer area via a high-resolution CMOS camera, and so image acquisition accounts for nearly 1% of total process time. The larger FOV(field of view) to use the image of the entire wafer area worsen camera lens distortion. A camera calibration using high order polynomials is used for accurate lens distortion correction. And template matching is used to find a correct notch's position. The performance of the proposed system was demonstrated by experiments of wafer center alignment and notch alignment.

A Study on the Optimal Image Acquisition Time of 18F- Flutemetamol using List Mode (LIST mode를 이용한 18F-Flutemetamol 의 최적 영상획득 시간에 관한 연구)

  • Ryu, Chan-Ju
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.6
    • /
    • pp.891-897
    • /
    • 2021
  • With the development of Amyloid PET Tracer, the accuracy of Alzheimer's diagnosis can be improved through the identification of beta-amyloid neurites. However, the long image acquisition time of 20 minutes can be difficult for the patient. PET/CT scans are sensitive to patient movement and may partially affect test results. In this study, we studied the proper image acquisition time without affecting the quantitative evaluation of the image through the list mode acquisition method according to the time of the distribution of radioactive drugs in the body. The list mode includes information about time compared to the existing frame mode, and it is easy to analyze data because it can reconstruct images about the time that researchers want. The research method obtained a reconstructed image by time using a list mode of 5min frame/bed, 10min frame/bed, 15min frame/bed, and 20min frame/bed to compare the difference between signal-to-pons take ratio (SNR) and lesion-to-pons uptake ratio (LPR) and the difference in reading time to obtain an appropriate image. As a result of quantitative analysis, when measuring in list mode, SUVmean values decreased in 6 regions of interest as the image acquisition time increased, but showed the largest difference in 5 min/bed images, followed by 10 min/bed and 15 min/bed. As a result, the difference in SUVmean values decreased. Therefore, it was found that SUVmean values at 15 min/bed did not differ enough to not affect image evaluation. There was no difference in LPR values. As a result of the qualitative analysis, there was no change in the reading findings according to the PET image acquisition time and there was no significant difference in the qualitative analysis score of the image reconstruction according to time. As a result of the study, there is no significant difference between 15 min/bed and 20 min/bed images during the 18F-flutemetamol PET/CT test, so it can be said that it is clinically useful to reduce the image acquisition time selectively using 15 min/bed via list mode depending on the patient's condition.

Reconstruction of Wide FOV Image from Hyperbolic Cylinder Mirror Camera (실린더형 쌍곡면 반사체 카메라 광각영상 복원)

  • Kim, Soon-Cheol;Yi, Soo-Yeong
    • The Journal of Korea Robotics Society
    • /
    • v.10 no.3
    • /
    • pp.146-153
    • /
    • 2015
  • In order to contain as much information as possible in a single image, a wide FOV(Field-Of-View) imaging system is required. The catadioptric imaging system with hyperbolic cylinder mirror can acquire over 180 degree horizontal FOV realtime panorama image by using a conventional camera. Because the hyperbolic cylinder mirror has a curved surface in horizontal axis, the original image acquired from the imaging system has the geometrical distortion, which requires the image processing algorithm for reconstruction. In this paper, the image reconstruction algorithms for two cases are studied: (1) to obtain an image with uniform angular resolution and (2) to obtain horizontally rectilinear image. The image acquisition model of the hyperbolic cylinder mirror imaging system is analyzed by the geometrical optics and the image reconstruction algorithms are proposed based on the image acquisition model. To show the validity of the proposed algorithms, experiments are carried out and presented in this paper. The experimental results show that the reconstructed images have a uniform angular resolution and a rectilinear form in horizontal axis, which are natural to human.

The Digital Image Acquisition of High-resolution by Enhancing the Multiple Images (다중영상 강화에 의한 고해상도 수치영상획득)

  • 강준묵;오원진;엄대용
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.17 no.2
    • /
    • pp.167-176
    • /
    • 1999
  • The study about quantitative or qualitative analysis of object using digital image is being progressed actively with the development of the image medium and image process technique. But, it is very high that the dependency about image acquisition system of high resolution for image analysis of high accuracy and it is a equipment of high-price. In this study, I extracted the optimum condition of image enhancement by analyzing and enhancing the multiple images which were acquired by system of low-price. And I carried out the analysis of 3D accuracy by being applied the optimum condition of image enhancement. In the result of analysis of average 3D positioning error using law image and enhanced image which is acquired by applying the optimum condition of image enhancement, I could obtain the progressed accuracy about 10% on the enhanced image.

  • PDF

A Study on Target Acquisition and Tracking to Develop ARPA Radar (ARPA 레이더 개발을 위한 물표 획득 및 추적 기술 연구)

  • Lee, Hee-Yong;Shin, Il-Sik;Lee, Kwang-Il
    • Journal of Navigation and Port Research
    • /
    • v.39 no.4
    • /
    • pp.307-312
    • /
    • 2015
  • ARPA(Automatic Radar Plotting Aid) is a device to calculate CPA(closest point of approach)/TCPA(time of CPA), true course and speed of targets by vector operation of relative courses and speeds. The purpose of this study is to develop target acquisition and tracking technology for ARPA Radar implementation. After examining the previous studies, applicable algorithms and technologies were developed to be combined and basic ARPA functions were developed as a result. As for main research contents, the sequential image processing technology such as combination of grayscale conversion, gaussian smoothing, binary image conversion and labeling was deviced to achieve a proper target acquisition, and the NNS(Nearest Neighbor Search) algorithm was appllied to identify which target came from the previous image and finally Kalman Filter was used to calculate true course and speed of targets as an analysis of target behavior. Also all technologies stated above were implemented as a SW program and installed onboard, and verified the basic ARPA functions to be operable in practical use through onboard test.

System Architecture for Digital Hologram Video Service (디지털 홀로그램의 비디오 서비스를 위한 시스템 설계)

  • Lee, Yoon-Hyuk;Seo, Young-Ho;Kim, Dong-Wook
    • Journal of Broadcast Engineering
    • /
    • v.19 no.5
    • /
    • pp.590-605
    • /
    • 2014
  • The purpose of this paper is to propose a service system for a digital hologram video, which has not been published yet. This system assumes the existing service framework for 2-dimensional or 3-dimensional image/video, which includes data acquisition, processing, transmission, reception, and reconstruction. This system includes acquisition of color and depth image pairs from a image acquisition system with vertical rigs, rectification of acquired image pairs and generating digital hologram. Also it is designed to reduce the CGH (computer-generated hologram) generation time to 1/3. It also includes some additional and optional functions such as watermarking, compression, and encryption.

Compressive Sensing - Mathematical Principles and Practical Implications-

  • Cho, Y.M.
    • The Magazine of the IEIE
    • /
    • v.38 no.1
    • /
    • pp.31-43
    • /
    • 2011
  • The mathematical foundations of the compressive sensing which goes against the common wisdom of data acquisition (the Nyquist-Shannon theorem) is reviewed. The compressive sensing asserts that one can reconstruct images or signals of interest accurately from a number of samples far smaller than the desired resolution of the image (e.g., the number of pixels in the image). The compressive sensing has far reaching implications. It suggests the new data acquisition protocols that translates analog information to digital form with fewer sensors considered necessary.

  • PDF

Image Reconstruction from Incomplete Data Using a New Data Acquisition Method (새로운 투영 데이터 수집방법을 이용한 불완전한 데이터로부터 영상 재구성)

  • 정병문;박길흠;하영호
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.12
    • /
    • pp.1559-1565
    • /
    • 1988
  • In computed tomography, the errors asociated with interpolation in the reconstruction process degrade the reconstructed image and may cause divergence unless a large number of rays is used. A new data acquisition scheme without interpolation is developed in this paper. Samples (projection data ) are taken in phase with samples of the Cartesian grid to eliminated errors associated with interpolation process.

  • PDF

Backup Site Operation Of COMS Image Data Acquisition And Control System (천리안위성 영상 수신 및 처리에 대한 백업 지상국 운영)

  • Cho, Young-Min;Kwon, Eun Joo
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.2
    • /
    • pp.95-101
    • /
    • 2015
  • The backup site operation of the Image Data Acquisition and Control System (IDACS) for Communication Ocean Meteorological Satellite (COMS) is discussed in terms of the ground station configuration, image data processing, and the characteristics of backup activities for both the meteorological image data and the ocean image data. The well-performed backup operation of the COMS IDACS is also confirmed with the first three years normal operation results from April, 2011 to March, 2014. The operation results are analyzed through statistical approach to provide the achieved operational performance of the image data reception, preprocessing, and broadcast.

Real-time Image Scanning System for Detecting Tunnel Cracks Using Linescan Cameras

  • Jeong, Dong-Hyun;Kim, Young-Rin;Cho, I-Sac;Kim, Eun-Ju;Lee, Kang-Moon;Jin, Kwang-Won;Song, Chang-Geun
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.6
    • /
    • pp.726-736
    • /
    • 2007
  • In this paper, real-time image scanning system using linescan cameras is designed. The system is specially designed to diagnose and analyse the conditions of tunnels such as crack widths through the captured images. The system consists of two major parts, the image acquisition system and the image merging system. To save scanned image data into storage media in real-time, the image acquisition system has been designed with two different control and management modules. The control modules are in charge of controlling the hardware device and the management modules handle system resources so that the scanned images are safely saved to the magnetic storage devices. The system can be mounted to various kinds of vehicles. After taking images, the image merging system generates extended images by combining saved images. Several tests are conducted in laboratory as well as in the field. In the laboratory simulation, both systems are tested several times and upgraded. In the field-testing, the image acquisition system is mounted to a specially designed vehicle and images of the interior surface of the tunnel are captured. The system is successfully tested in a real tunnel with a vehicle at the speed of 20 km/h. The captured images of the tunnel condition including cracks are vivid enough for an expert to diagnose the state of the tunnel using images instead of seeing through his/her eyes.

  • PDF