• Title/Summary/Keyword: illumination-robust image

Search Result 162, Processing Time 0.028 seconds

Illumination Influence Minimization Method for Efficient Object (영상에서 효율적인 객체 추출을 위한 조명 영향 최소화 기법)

  • Kim, Jae-Seoung;Lee, Ki-Jung;Whangbo, Taeg-Keun
    • Journal of Digital Contents Society
    • /
    • v.14 no.1
    • /
    • pp.117-124
    • /
    • 2013
  • This paper suggests the robust method of extraction for moving objects in illumination variation by using image sequence from an immovable camera. The most difficult part of the implication is the effect by illumination and noise. The object area is hardly estimated when the dusky area occurs in illumination variation by time change. This thesis describes the extraction of moving objects employed by Gaussian mixture model which is noise robust measure. Also, the report suggests the elimination method of illumination part in input image by the representative illumination image which is defined to minimize the illumination influence.

Robust Method of Updating Reference Background Image in Unstable Illumination Condition (불안정한 조명 환경에 강인한 참조 배경 영상의 갱신 기법)

  • Ji, Young-Suk;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.1
    • /
    • pp.91-102
    • /
    • 2010
  • It is very difficult that a previous surveillance system and vehicle detection system find objects on a limited and unstable illumination condition. This paper proposes a robust method of adaptively updating a reference background image for solving problems that are generated by the unstable illumination. The first input image is set up as the reference background image, and is divided into three block categories according to an edge component. Then a block state analysis, which uses a rate of change of the brightness, a stability, a color information, and an edge component on each block, is applied to the input image. On the reference background image, neighbourhood blocks having the same state of a updated block are merged as a block. The proposed method can generate a robust reference background image because it distinguishes a moving object area from an unstable illumination. The proposed method very efficiently updates the reference background image from the point of view of the management and the processing time. In order to demonstrate the superiority of the proposed stable manner in situation that an illumination quickly changes.

Panoramic Image Stitching using SURF

  • You, Meng;Lim, Jong-Seok;Kim, Wook-Hyun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.1
    • /
    • pp.26-32
    • /
    • 2011
  • This paper proposes a new method to process panoramic image stitching using SURF(Speeded Up Robust Features). Panoramic image stitching is considered a problem of the correspondence matching. In computer vision, it is difficult to find corresponding points in variable environment where a scale, rotation, view point and illumination are changed. However, SURF algorithm have been widely used to solve the problem of the correspondence matching because it is faster than SIFT(Scale Invariant Feature Transform). In this work, we also describe an efficient approach to decreasing computation time through the homography estimation using RANSAC(random sample consensus). RANSAC is a robust estimation procedure that uses a minimal set of randomly sampled correspondences to estimate image transformation parameters. Experimental results show that our method is robust to rotation, zoom, Gaussian noise and illumination change of the input images and computation time is greatly reduced.

Robust Lip Extraction and Tracking of the Mouth Region

  • Min, Duk-Soo;Kim, Jin-Young;Park, Seung-Ho;Kim, Ki-Jung
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.927-930
    • /
    • 2000
  • Visual features of lip area play an important role in the visual speech information. We are concerned about correct lip area as region of interest (ROI). In this paper, we propose a robust and fast method for locating the mouth corners. Also, we define a region of interest at mouth during speech. A method, which we have used, only uses the horizontal and vertical image operators at mouth area. This searching is performed by fitting the ROI-template to image with illumination control. Most of the lip extraction algorithms are dependent on luminosity of image. We just used the binary image where the variable threshold is applied. The variable threshold varies to illumination condition. In order to control those variations, the gray-tone is converted to binary image by threshold, which is obtained through Multiple Linear Regression Analysis (MLRA) about divided 2D special region. Thus we obtained the region of interest at mouth area, which is the robust extraction about illumination. A region of interest is automatically extracted.

  • PDF

Face Image Illumination Normalization based on Illumination-Separated Eigenface Subspace (조명분리 고유얼굴 부분공간 기반 얼굴 이미지 조명 정규화)

  • Seol, Tae-in;Chung, Sun-Tae;Ki, Sunho;Cho, Seongwon
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2009.05a
    • /
    • pp.179-184
    • /
    • 2009
  • Robust face recognition under various illumination environments is difficult to achieve. For face recognition robust to illumination changes, usually face images are normalized with respect to illumination as a preprocessing step before face recognition. The anisotropic smoothing-based illumination normalization method, known to be one of the best illumination normalization methods, cannot handle casting shadows. In this paper, we present an efficient illumination normalization method for face recognition. The proposed illumination normalization method separates the effect of illumination from eigenfaces and constructs an illumination-separated eigenface subspace. Then, an incoming face image is projected into the subspace and the obtained projected face image is rendered so that illumination effects including casting shadows are reduced as much as possible. Application to real face images shows the proposed illumination normalization method.

  • PDF

Facial Image Synthesis Considering Illumination Variations on Mobile Devices (모바일 기기에서 조명 변화를 고려한 얼굴 영상 합성)

  • Kwon, Ji-In;Lee, Sang-Hoon;Choi, Soo-Mi
    • Journal of the HCI Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.21-26
    • /
    • 2011
  • This paper presents a robust method for facial image synthesis under varying illumination by combining illumination correction and Poisson image processing techniques. The presented method automatically detects skin area and corrects highly saturated regions that can cause bad effects on the final synthesis image. The developed method can be applied to various facial synthesis applications by correcting illumination variations that can occur frequently on photos taken with a camera phone.

  • PDF

Illumination Robust Face Recognition using Ridge Regressive Bilinear Models (Ridge Regressive Bilinear Model을 이용한 조명 변화에 강인한 얼굴 인식)

  • Shin, Dong-Su;Kim, Dai-Jin;Bang, Sung-Yang
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.1
    • /
    • pp.70-78
    • /
    • 2007
  • The performance of face recognition is greatly affected by the illumination effect because intra-person variation under different lighting conditions can be much bigger than the inter-person variation. In this paper, we propose an illumination robust face recognition by separating identity factor and illumination factor using the symmetric bilinear models. The translation procedure in the bilinear model requires a repetitive computation of matrix inverse operation to reach the identity and illumination factors. Sometimes, this computation may result in a nonconvergent case when the observation has an noisy information. To alleviate this situation, we suggest a ridge regressive bilinear model that combines the ridge regression into the bilinear model. This combination provides some advantages: it makes the bilinear model more stable by shrinking the range of identity and illumination factors appropriately, and it improves the recognition performance by reducing the insignificant factors effectively. Experiment results show that the ridge regressive bilinear model outperforms significantly other existing methods such as the eigenface, quotient image, and the bilinear model in terms of the recognition rate under a variety of illuminations.

Design of Two-Dimensional Robust Face Recognition System Realized with the Aid of Facial Symmetry with Illumination Variation (얼굴의 대칭성을 이용하여 조명 변화에 강인한 2차원 얼굴 인식 시스템 설계)

  • Kim, Jong-Bum;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.7
    • /
    • pp.1104-1113
    • /
    • 2015
  • In this paper, we propose Two-Dimensional Robust Face Recognition System Realized with the Aid of Facial Symmetry with Illumination Variation. Preprocessing process is carried out to obtain mirror image which means new image rearranged by using difference between light and shade of right and left face based on a vertical axis of original face image. After image preprocessing, high dimensional image data is transformed to low-dimensional feature data through 2-directional and 2-dimensional Principal Component Analysis (2D)2PCA, which is one of dimensional reduction techniques. Polynomial-based Radial Basis Function Neural Network pattern classifier is used for face recognition. While FCM clustering is applied in the hidden layer, connection weights are defined as a linear polynomial function. In addition, the coefficients of linear function are learned through Weighted Least Square Estimation(WLSE). The Structural as well as parametric factors of the proposed classifier are optimized by using Particle Swarm Optimization(PSO). In the experiment, Yale B data is employed in order to confirm the advantage of the proposed methodology designed in the diverse illumination variation

Robust Visual Odometry System for Illumination Variations Using Adaptive Thresholding (적응적 이진화를 이용하여 빛의 변화에 강인한 영상거리계를 통한 위치 추정)

  • Hwang, Yo-Seop;Yu, Ho-Yun;Lee, Jangmyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.9
    • /
    • pp.738-744
    • /
    • 2016
  • In this paper, a robust visual odometry system has been proposed and implemented in an environment with dynamic illumination. Visual odometry is based on stereo images to estimate the distance to an object. It is very difficult to realize a highly accurate and stable estimation because image quality is highly dependent on the illumination, which is a major disadvantage of visual odometry. Therefore, in order to solve the problem of low performance during the feature detection phase that is caused by illumination variations, it is suggested to determine an optimal threshold value in the image binarization and to use an adaptive threshold value for feature detection. A feature point direction and a magnitude of the motion vector that is not uniform are utilized as the features. The performance of feature detection has been improved by the RANSAC algorithm. As a result, the position of a mobile robot has been estimated using the feature points. The experimental results demonstrated that the proposed approach has superior performance against illumination variations.

Research Trends for Deep Learning-Based High-Performance Face Recognition Technology (딥러닝 기반 고성능 얼굴인식 기술 동향)

  • Kim, H.I.;Moon, J.Y.;Park, J.Y.
    • Electronics and Telecommunications Trends
    • /
    • v.33 no.4
    • /
    • pp.43-53
    • /
    • 2018
  • As face recognition (FR) has been well studied over the past decades, FR technology has been applied to many real-world applications such as surveillance and biometric systems. However, in the real-world scenarios, FR performances have been known to be significantly degraded owing to variations in face images, such as the pose, illumination, and low-resolution. Recently, visual intelligence technology has been rapidly growing owing to advances in deep learning, which has also improved the FR performance. Furthermore, the FR performance based on deep learning has been reported to surpass the performance level of human perception. In this article, we discuss deep-learning based high-performance FR technologies in terms of representative deep-learning based FR architectures and recent FR algorithms robust to face image variations (i.e., pose-robust FR, illumination-robust FR, and video FR). In addition, we investigate big face image datasets widely adopted for performance evaluations of the most recent deep-learning based FR algorithms.