• Title/Summary/Keyword: ill-posed problem

Search Result 73, Processing Time 0.023 seconds

A Image Reconstruction Uing Simulated Annealing in Electrical Impedance Tomograghy (시뮬레이티드 어닐링을 이용한 전기임픽던스단층촬영법의 영상복원)

  • Kim Ho-Chan;Boo Chang-Jin;Lee Yoon-Joon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.2
    • /
    • pp.120-127
    • /
    • 2003
  • In electrical impedance tomography(EIT), various image reconstruction algorithms have been used in order to compute the internal resistivity distribution of the unknown object with its electric potential data at the boundary. Mathematically the EIT image reconstruction algorithm is a nonlinear ill-posed inverse problem. This paper presents a simulated annealing technique as a statistical reconstruction algorithm for the solution of the static EIT inverse problem. Computer simulations with the 32 channels synthetic data show that the spatial resolution of reconstructed images by the proposed scheme is improved as compared to that of the mNR algorithm or genetic algorithm at the expense of increased computational burden.

Determination of Unknown Time-Dependent Heat Source in Inverse Problems under Nonlocal Boundary Conditions by Finite Integration Method

  • Areena Hazanee;Nifatamah Makaje
    • Kyungpook Mathematical Journal
    • /
    • v.64 no.2
    • /
    • pp.353-369
    • /
    • 2024
  • In this study, we investigate the unknown time-dependent heat source function in inverse problems. We consider three general nonlocal conditions; two classical boundary conditions and one nonlocal over-determination, condition, these genereate six different cases. The finite integration method (FIM), based on numerical integration, has been adapted to solve PDEs, and we use it to discretize the spatial domain; we use backward differences for the time variable. Since the inverse problem is ill-posed with instability, we apply regularization to reduce the instability. We use the first-order Tikhonov's regularization together with the minimization process to solve the inverse source problem. Test examples in all six cases are presented in order to illustrate the accuracy and stability of the numerical solutions.

A novel PSO-based algorithm for structural damage detection using Bayesian multi-sample objective function

  • Chen, Ze-peng;Yu, Ling
    • Structural Engineering and Mechanics
    • /
    • v.63 no.6
    • /
    • pp.825-835
    • /
    • 2017
  • Significant improvements to methodologies on structural damage detection (SDD) have emerged in recent years. However, many methods are related to inversion computation which is prone to be ill-posed or ill-conditioning, leading to low-computing efficiency or inaccurate results. To explore a more accurate solution with satisfactory efficiency, a PSO-INM algorithm, combining particle swarm optimization (PSO) algorithm and an improved Nelder-Mead method (INM), is proposed to solve multi-sample objective function defined based on Bayesian inference in this study. The PSO-based algorithm, as a heuristic algorithm, is reliable to explore solution to SDD problem converted into a constrained optimization problem in mathematics. And the multi-sample objective function provides a stable pattern under different level of noise. Advantages of multi-sample objective function and its superior over traditional objective function are studied. Numerical simulation results of a two-storey frame structure show that the proposed method is sensitive to multi-damage cases. For further confirming accuracy of the proposed method, the ASCE 4-storey benchmark frame structure subjected to single and multiple damage cases is employed. Different kinds of modal identification methods are utilized to extract structural modal data from noise-contaminating acceleration responses. The illustrated results show that the proposed method is efficient to exact locations and extents of induced damages in structures.

Performance Comparison of Regularization Methods in Electrical Resistance Tomography (전기 저항 단층촬영법에서의 조정기법 성능비교)

  • Kang, Suk-In;Kim, Kyung-Youn
    • Journal of IKEEE
    • /
    • v.20 no.3
    • /
    • pp.226-234
    • /
    • 2016
  • Electrical resistance tomography (ERT) is an imaging technique where the internal resistivity distribution inside an object is reconstructed. The ERT image reconstruction is a highly nonlinear ill-posed problem, so regularization methods are used to achieve desired image. The reconstruction outcome is dependent on the type of regularization method employed such as l2-norm, l1-norm, and total variation regularization method. That is, use of an appropriate regularization method considering the flow characteristics is necessary to attain good reconstruction performance. Therefore, in this paper, regularization methods are tested through numerical simulations with different flow conditions and the performance is compared.

Intelligent Optimization Algorithm Approach to Image Reconstruction in Electrical Impedance Tomography (지능 최적 알고리즘을 이용한 전기임피던스 단층촬영법의 영상복원)

  • Kim, Ho-Chan;Boo, Chang-Jin;Lee, Yoon-Joon
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.513-516
    • /
    • 2002
  • In electrical impedance tomography(EIT), various image reconstruction algorithms have been used in order to compute the internal resistivity distribution of the unknown object with its electric potential data at the boundary. Mathematically the EIT image reconstruction algorithm is a nonlinear ill-posed inverse problem. This paper presents two intelligent optimization algorithm techniques such as genetic algorithm and simulated annealing for the solution of the static EIT inverse problem. We summarize the simulation results for the three algorithm forms: modified Newton-Raphson, genetic algorithm, and simulated annealing.

  • PDF

Transformation Technique for Null Space-Based Linear Discriminant Analysis with Lagrange Method (라그랑지 기법을 쓴 영 공간 기반 선형 판별 분석법의 변형 기법)

  • Hou, Yuxi;Min, Hwang-Ki;Song, Iickho;Choi, Myeong Soo;Park, Sun;Lee, Seong Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.2
    • /
    • pp.208-212
    • /
    • 2013
  • Due to the singularity of the within-class scatter, linear discriminant analysis (LDA) becomes ill-posed for small sample size (SSS) problems. An extension of LDA, the null space-based LDA (NLDA) provides good discriminant performances for SSS problems. In this paper, by applying the Lagrange technique, the procedure of transforming the problem of finding the feature extractor of NLDA into a linear equation problem is derived.

Dynamic deflection monitoring of high-speed railway bridges with the optimal inclinometer sensor placement

  • Li, Shunlong;Wang, Xin;Liu, Hongzhan;Zhuo, Yi;Su, Wei;Di, Hao
    • Smart Structures and Systems
    • /
    • v.26 no.5
    • /
    • pp.591-603
    • /
    • 2020
  • Dynamic deflection monitoring is an essential and critical part of structural health monitoring for high-speed railway bridges. Two critical problems need to be addressed when using inclinometer sensors for such applications. These include constructing a general representation model of inclination-deflection and addressing the ill-posed inverse problem to obtain the accurate dynamic deflection. This paper provides a dynamic deflection monitoring method with the placement of optimal inclinometer sensors for high-speed railway bridges. The deflection shapes are reconstructed using the inclination-deflection transformation model based on the differential relationship between the inclination and displacement mode shape matrix. The proposed optimal sensor configuration can be used to select inclination-deflection transformation models that meet the required accuracy and stability from all possible sensor locations. In this study, the condition number and information entropy are employed to measure the ill-condition of the selected mode shape matrix and evaluate the prediction performance of different sensor configurations. The particle swarm optimization algorithm, genetic algorithm, and artificial fish swarm algorithm are used to optimize the sensor position placement. Numerical simulation and experimental validation results of a 5-span high-speed railway bridge show that the reconstructed deflection shapes agree well with those of the real bridge.

Modified partial least squares method implementing mixed-effect model

  • Kyunga Kim;Shin-Jae Lee;Soo-Heang Eo;HyungJun Cho;Jae Won Lee
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.1
    • /
    • pp.65-73
    • /
    • 2023
  • Contemporary biomedical data often involve an ill-posed problem owing to small sample size and large number of multi-collinear variables. Partial least squares (PLS) method could be a plausible alternative to an ill-conditioned ordinary least squares. However, in the case of a PLS model that includes a random-effect, how to deal with a random-effect or mixed effects remains a widely open question worth further investigation. In the present study, we propose a modified multivariate PLS method implementing mixed-effect model (PLSM). The advantage of PLSM is its versatility in handling serial longitudinal data or its ability for taking a randomeffect into account. We conduct simulations to investigate statistical properties of PLSM, and showcase its real clinical application to predict treatment outcome of esthetic surgical procedures of human faces. The proposed PLSM seemed to be particularly beneficial 1) when random-effect is conspicuous; 2) the number of predictors is relatively large compared to the sample size; 3) the multicollinearity is weak or moderate; and/or 4) the random error is considerable.

Application of Matrix Adaptive Regularization Method for Human Thorax Image Reconstruction (인체 흉부 영상 복원을 위한 행렬 적응 조정 방법의 적용)

  • Jeon, Min-Ho;Kim, Kyung-Youn
    • Journal of IKEEE
    • /
    • v.19 no.1
    • /
    • pp.33-40
    • /
    • 2015
  • Inverse problem in electrical impedance tomography (EIT) is highly ill-posed therefore prior information is used to mitigate the ill-posedness. Regularization methods are often adopted in solving EIT inverse problem to have satisfactory reconstruction performance. In solving the EIT inverse problem, iterative Gauss-Newton method is generally used due to its accuracy and fast convergence. However, its performance is still suboptimal and mainly depends on the selection of regularization parameter. Although, there are few methods available to determine the regularization parameter such as L-curve method they are sometimes not applicable for all cases. Moreover, regularization parameter is a scalar and it is fixed during iteration process. Therefore, in this paper, a novel method is used to determine the regularization parameter to improve reconstruction performance. Conductivity norm is calculated at each iteration step and it used to obtain the regularization parameter which is a diagonal matrix in this case. The proposed method is applied to human thorax imaging and the reconstruction performance is compared with traditional methods. From numerical results, improved performance of proposed method is seen as compared to conventional methods.

Image Reconstruction Using Genetic Algorithm in Electrical Impedance Tomograghy (유전 알고리즘을 이용한 전기 임피던스 단층촬영법의 영상복원)

  • Kim, Ho-Chan;Moon, Dong-Chun;Kim, Min-Chan;Kim, Sin;Lee, Yoon-Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.1
    • /
    • pp.50-56
    • /
    • 2003
  • In electrical impedance tomography(EIT), various image reconstruction algorithms have been used in order to compute the internal resistivity distribution of the unknown object with its electric potential data at the boundary. Mathematically the EIT image reconstruction algorithm is a nonlinear ill-posed inverse problem. This paper presents a new combined method based on genetic algorithm(GA) and modified Newton-Raphson(mNR) algorithm via two-step approach for the solution of the static EIT inverse problem. In the first step, each mesh is classified into three mesh groups: target, background, and temporary groups. The mNR algorithm can be used to determine the region of group. In the second step, the values of these resistivities are determined using genetic algorithm. Computer simulations with the 32 channels synthetic data show that the spatial resolution of reconstructed images by the proposed scheme is improved compared to that of the mNR algorithm at the expense of increased computational burden.