• 제목/요약/키워드: ignition limit

검색결과 174건 처리시간 0.026초

Measurement and Prediction of Fire and Explosion Properties of 3-Hexanone (3-헥사논의 화재 및 폭발 특성치의 측정 및 예측)

  • Ha, Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • 제17권6호
    • /
    • pp.33-38
    • /
    • 2013
  • For the safe handling of 3-hexanone(ethyl propyl ketone), this study was investigated the explosion limits of 3-hexanone in the reference data. The flash points and AITs(auto-ignition temperatures) by ignition delay time were experimented. The lower flash points of 3-hexanone by using closed-cup tester were experimented at $18^{\circ}C$. The lower flash points of 3-hexanone by using open cup tester were experimented in $27^{\circ}C{\sim}32^{\circ}C$. This study measured relationship between the AITs and the ignition delay times by using ASTM E659 tester for 3-hexanone. The experimental AIT of 3-hexanone was at $425^{\circ}C$. The lower explosion limit( LEL) by the measured lower flash point of 3-hexanone was calculated as 1.21 Vol%.

A Study on the Rapid Bulk Combustion of Premixture Using the Radical Seeding

  • Lee, Myung-Jun;Kim, Jong-Youl;Park, Jong-Sang;Yeom, Jeong-Kuk;Chung, Sung-Sik
    • Journal of Mechanical Science and Technology
    • /
    • 제18권9호
    • /
    • pp.1623-1629
    • /
    • 2004
  • The objective of this study is the rapid bulk combustion of mixture in a constant volume chamber with a tiny sub-chamber. Some narrow passage holes were arranged to induce simultaneous multi-point ignition in the main chamber by jet of burned and unburned gases including radicals from the sub-chamber, and the equivalence ratios of pre-mixture in the main chamber and the sub-chamber were the same. The principal factors of the Radical Induced Auto-Ignition (RIAI) method are the diameter of the passage holes and the volume of sub-chamber. The relationship between the sub-chamber and diameter of passage hole was represented by the ratios of sub-chamber volume to passage hole volume. The ratios are non-dimensional coefficients for sub-chamber characteristics. As a result, the RIAI method reduced the combustion period, which expanded the lean limit in comparison with SI method.

The Evaluation of Hazard by Measurement of Combustible Characteristics of n-Tetradecane (노말테트라데칸의 연소특성치 측정에 의한 위험성 평가)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • 제27권5호
    • /
    • pp.70-76
    • /
    • 2012
  • For the safe handling of n-tetradecane, the lower flash points and the upper flash point, fire point, AITs (auto-ignition temperatures) by ignition delay time were experimented. Also lower and upper explosion limits by using measured the lower and upper flash points for n-tetradecane were calculated. The lower flash points of n-tetradecane by using closed-cup tester were measured $104^{\circ}C$ and $112^{\circ}C$. The lower flash points and fire point of n-tetradecane by using open cup tester were measured $113^{\circ}C$ and $115^{\circ}C$, respectively. This study measured relationship between the AITs and the ignition delay times by using ASTM E659 apparatus for n-tetradecane. The experimental AIT of n-tridecane was $207^{\circ}C$. The calculated lower and upper explosion limit by using measured lower $104^{\circ}C$ and upper flash point $140^{\circ}C$ for n-tetradecane were 0.63 Vol.% and 3.18 Vol%.

The Measurement of Fire and Explosion Properties of n-Pentadecane (노말펜타데칸의 화재 및 폭발 특성치의 측정)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • 제28권4호
    • /
    • pp.53-57
    • /
    • 2013
  • For the safe handling of n-pentadecane, the lower flash points and the upper flash point, fire point, AITs(auto-ignition temperatures) by ignition delay time were experimented. Also lower and upper explosion limits by using measured the lower and upper flash points for n-pentadecane were calculated. The lower flash points of n-pentadecane by using closed-cup tester were measured $118^{\circ}C$ and $122^{\circ}C$. The lower flash points and fire point of n-pentadecane by using open cup tester were measured $126^{\circ}C$ and $127^{\circ}C$, respectively. This study measured relationship between the AITs and the ignition delay times by using ASTM E659 apparatus for n-pentadecane. The experimental AIT of n-pentadecane was $195^{\circ}C$. The calculated lower and upper explosion limit by using measured lower $118^{\circ}C$ and upper flash point $174^{\circ}C$ for n-pentadecane were 0.54 Vol.% and 6.40 Vol.%.

Appropriateness of MSDS by Means of the Measurement of Combustible Properties of Anisole (아니솔의 연소특성치의 측정에 의한 MSDS의 적정성)

  • Ha, Dong-Myeong
    • Fire Science and Engineering
    • /
    • 제29권2호
    • /
    • pp.20-24
    • /
    • 2015
  • For the safe handling of anisole, this study was investigated the explosion limits of anisole in the reference data. The flash points and auto-ignition temperatures (AITs) by ignition delay time were experimented. The lower flash points of Anisole by using closed-cup tester were experimented in $39^{\circ}C$ and $42^{\circ}C$. The lower flash points of Anisole by using open cup tester were experimented in $50^{\circ}C$ and $54^{\circ}C$. This study measured relationship between the AITs and the ignition delay times by using ASTM E659 tester for Anisole. The AIT of Anisole was experimented as $390^{\circ}C$. The lower explosion limit (LEL) by the measured the lower flash point for Anisole were calculated as 1.07 Vol%.

The Measurement of Fire and Explosion Properties of n-Hexadecane (노말헥사데칸의 화재 및 폭발 특성치의 측정)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • 제29권3호
    • /
    • pp.39-45
    • /
    • 2014
  • For the safe handling of n-hexadecane, the lower flash points and the upper flash point, fire point, AITs(auto-ignition temperatures) by ignition delay time were experimented. Also lower and upper explosion limits by using measured the lower and upper flash points for n-hexadecane were calculated. The lower flash points of n-hexadecane by using the Setaflash and the Pensky-Martens closed testers were measured $128^{\circ}C$ and $126^{\circ}C$, respectively. The lower flash points of the Tag and the Cleveland open cup testers were measured $136^{\circ}C$ and $132^{\circ}C$, respectively. The fire points of the Tag and the Cleveland open cup testers were measured $144^{\circ}C$. respectively. This study measured relationship between the AITs and the ignition delay times by using ASTM E659 apparatus for n-hexadecane. The experimental AIT of n-hexadecane was $200^{\circ}C$. The calculated lower and upper explosion limit by using measured lower $128^{\circ}C$ and upper flash point $180^{\circ}C$ for n-hexadecane were 0.42 Vol.% and 4.70 Vol.%.

A basic study on development of multiple- spark capacitor discharge igniter for lean burn engine (희박연소기관용 용량방전식 다회수스파크 점화장치의 개발에 관한 기초 연구)

  • Lee, Sang-Jun;Na, Seong-O;Lee, Jong-Tae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제20권11호
    • /
    • pp.3676-3685
    • /
    • 1996
  • Enhancement of the ignitability was necessary to realize the lean burn engine. The characteristics of multiple-spark capacitor discharge igniter(MSCDI) usefulness of which for lean burn was examined in constant volume combustion chamber and evaluated in spark ignition engine. Noise of MSCDI for engine was restricted by adoption of low voltage control system. It was found that the adaptability for high engine speed was remarkable. Lean limit in engine with MSCDI was extended 10% than conventional coil ignition system. Also maximum brake thermal efficiency was almost enhanced 1%.

A Study on the Combustion Characteristics of Lean Mixture by Radicals Induced Injection in a Constant Volume Combustor (1) (정적연소기에서 라디칼 유도분사를 이용한 희박혼합기의 연소특성에 관한 연구 (1))

  • 박종상;이태원;하종률;정성식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • 제12권2호
    • /
    • pp.45-53
    • /
    • 2004
  • An experimental study was carried out to obtain the fundamental data about the effects of radicals induced injection on premixture combustion. A constant volume combustor divided to the sub-chamber and the main chamber was used. The volume of the sub-chamber is set up to occupy less than 1.5% of that of whole combustion chamber. Radial twelve narrow passage holes are arranged between the main chamber and the sub-chamber. The products including radicals generated by spark ignition in the sub-chamber will derive the simultaneous multi-point ignition in the main chamber. While the equivalence ratio of pre-mixture in the main chamber and the sub-chamber is uniform. We have examined the effects of the sub-chamber volume, the diameter of passage hole, and the equivalence ratio on the combustion characteristics by means of burning pressure measurement and flame visualization. In the case of radical ignition method(RI), the overall turning time including the ignition delay became very short and the maximum burning pressure was slightly increased in comparison with those of the conventional spark ignition method(SI), that is, single chamber combustion without the sub-chamber. The combustible lean limit by RI method is extended to more ER=0.25 than that by SI method. Therefore the decrease of every emission including NOx and the improvement of fuel consumption is anticipated due to lean burn.

A Ignition Test of Gas Turbine Combustor For High Altitude simulation at Low Temperature Condition (가스터빈 연소기 고공환경 모사 시험을 위한 상압/저온 환경에서의 점화 특성 실험)

  • Kim, Ki-Woo;Kim, Tae-Woan;Kim, Bo-Yeon;Lee, Yang-Suk;Ko, Young-Sung;Jun, Yong-Min
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 한국추진공학회 2009년도 제33회 추계학술대회논문집
    • /
    • pp.553-556
    • /
    • 2009
  • In this study, ignition tests of a gas turbine combustor were performed to evaluate an ignition loop at low temperature condition. An experimental setup was constructed to simulate low temperature condition with a heat exchanger using dry ice as a coolant. Various low temperature conditions could be created by controlling the amount of air though the heat exchanger. The results showed that ignition limit decreased with air temperature.

  • PDF

A Study of the Evaluation of Combustion Properties of Tetralin (테트랄린의 연소특성치 평가에 관한 연구)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • 제33권4호
    • /
    • pp.8-14
    • /
    • 2018
  • In the industrial chemical process involving combustible materials, reliable safety data are required for design prevention, protection and mitigation measures. The accurate combustion properties are necessary to safely treatment, transportation and handling of flammable substances. The combustion parameters necessary for process safety are lower flash point, upper flash point, fire point, lower explosion limit(LEL), upper explosion limit(UEL)and autoignition temperature(AIT) etc.. However, the combustion properties suggested in the Material Safety Data Sheet (MSDS) are presented differently according to the literatures. In the chemical industries, tetralin which is widely used as a raw material of intermediate products, coating substances and rubber chemicals was selected. For safe handling of tetralin, the lower and flash point, the fire point, and the AIT were measured. The LEL and UEL of tetralin were calculated using the lower and upper flash point obtained in the experiment. The flash points of tetralin by using the Setaflash and Pensky-Martens closed-cup testers measured $70^{\circ}C$ and $76^{\circ}C$, respectively. The flash points of tetralin using the Tag and Cleveland open cup testers are measured $78^{\circ}C$ and $81^{\circ}C$, respectively. The AIT of the measured tetralin by the ASTM E659 apparatus was measured at $380^{\circ}C$. The LEL and UEL of tetralin measured by Setaflash closed-cup tester at $70^{\circ}C$ and $109^{\circ}C$ were calculated to be 1.02 vol% and 5.03 vol%, respectively. In this study, it was possible to predict the LEL and the UEL by using the lower and upper flash point of tetralin measured by Setasflash closed-cup tester. A new prediction method for the ignition delay time by the ignition temperature has been developed. It is possible to predict the ignition delay time at different ignition temperatures by the proposed model.