• 제목/요약/키워드: iNOS inhibitor

검색결과 199건 처리시간 0.022초

상황 물추출물이 LPS로 유도된 Raw 264.7 cell에서의 TNF-$\alpha$, IL-1$\beta$, IL-6 및 Nitric Oxide production에 미치는 영향 (Inhibitory Effect of Phellinus Igniarius water extract on TNF-$\alpha$, IL-1$\beta$, IL-6 and Nitric Oxide Production in lipopolysaccharide - activated Raw 264.7 cells)

  • 김상찬;정연숙;이재령;김영우;변부형;권택규;서성일;변성희;권영규
    • 동의생리병리학회지
    • /
    • 제18권3호
    • /
    • pp.880-886
    • /
    • 2004
  • Phellinus igniarius has been clinically used for the treatment of hemorrhoidal fistula, dysmenorrhea and the prevention of cancer in traditional oriental medicine. Recent studies showed that Phellinus igniarius produced anti-cancer, anti-metastasis and immuno-modulatory effects, There is lack of studies regarding the effects of Phellinus igniarius on the immunological activities. The present study was conducted to evaluate the effect of Phellinus igniarius on the regulatory mechanism of cytokines and nitric oxide (NO) for the immunological activities in Raw 264,7 cells. After the treatment of Phellinus igniarius water extract, cell viability was measured by MTT assay, NO production was monitored by measuring the nitrite content in culture medium. COX-2 and iNOS were determined by Immunoblot analysis, and levels of cytokine were analyzed by sandwich immunoassays. Results provided evidence that Phellinus igniarius inhibited the production of nitrite and nitrate (NO), inducible nitric oxide synthase (iNOS), interleukin-1β (IL-1β) and interleukin-6 (IL-6), and the activation of phospholylation of inhibitor κBα (p-IκBα) in Raw 264.7 cells activated with lipopolysaccharide (LPS). These findings suggest that Phellinus igniarius can produce anti-inflammatory effect, which may play a role in adjunctive therapy in Gram-negative bacterial infections.

Proinflammatory Cytokine and Nitric Oxide Production by Human Macrophages Stimulated with Trichomonas vaginalis

  • Han, Ik-Hwan;Goo, Sung-Young;Park, Soon-Jung;Hwang, Se-Jin;Kim, Yong-Seok;Yang, Michael Sungwoo;Ahn, Myoung-Hee;Ryu, Jae-Sook
    • Parasites, Hosts and Diseases
    • /
    • 제47권3호
    • /
    • pp.205-212
    • /
    • 2009
  • Trichomonas vaginalis commonly causes vaginitis and perhaps cervicitis in women and urethritis in men and women. Macrophages are important immune cells in response to T. vaginalis infection. In this study, we investigated whether human macrophages could be involved in inflammation induced by T. vaginalis. Human monocyte-derived macrophages (HMDM) were co-cultured with T. vaginalis. Live, opsonized-live trichomonads, and T. vaginalis Iysates increased proinflammatory cytokines, such as TNF-${\alpha}$, IL-$1{\beta}$, and IL-6 by HMDM. The involvement of nuclear factor (NF)-${\kappa}B$ signaling pathway in cytokine production induced by T. vaginalis was confirmed by phosphorylation and nuclear translocation of p65 NF-${\kappa}B$. In addition, stimulation with live T. vaginalis induced marked augmentation of nitric oxide (NO) production and expression of inducible NO synthase (iNOS) levels in HMDM. However, trichomonad-induced NF-${\kappa}B$ activation and TNF-${\alpha}$ production in macrophages were significantly inhibited by inhibition of iNOS levels with L-NMMA (NO synthase inhibitor). Moreover, pretreatment with NF-${\kappa}B$ inhibitors (PDTC or Bay11-7082) caused human macrophages to produce less TNF-${\alpha}$. These results suggest that T. vaginalis stimulates human macrophages to produce proinflammatory cytokines, such as IL-1, IL-6, and TNF-${\alpha}$, and NO. In particular, we showed that T. vaginalis induced TNF-${\alpha}$ production in macrophages through NO-dependent activation of NF-${\kappa}B$, which might be closely involved in inflammation caused by T. vaginalis.

The Enhancement of Endotoxin-Induced Nitric Oxide Production by Elevation of Glucose Concentration in Macrophage

  • Woo, Hyun-Goo;Jung, Yi-Sook;Baik, Eun-Joo;Moon, Chang-Hyun;Lee, Soo-Hwan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제3권4호
    • /
    • pp.447-454
    • /
    • 1999
  • The production of nitric oxide (NO) and the expression of inducible nitric oxide synthase (iNOS) are known to be modulated by a variety of factors. Recent study showed that endotoxin-induced NO synthesis and iNOS expression were greatly enhanced by elevation of extracellular glucose concentration in murine macrophages. Although this was suggested to be due to the activation of protein kinase C (PKC) via sorbitol pathway, there was lack of evidence for this speculation. This study was performed to delineate the underlying intracellular mechanisms of glucose-enhancing effect on endotoxin-induced NO production in Raw264.7 macrophages. The levels of NO release induced by lipopolysaccharide (LPS) significantly increased by the treatment of glucose in a concentration dependent manner and also, this effect was observed in LPS-preprimed cells. Concurrent incubation of cells with PKC inhibitors, H-7 or chelerythrine, and LPS resulted in the diminution of NO production regardless of glucose concentration but this was not in the case of LPS-prepriming, that is, chelerythrine showed a minimal effect on the glucose- enhancing effect. PMA, a PKC activator, did not show any significant effect on glucose-associated NO production. Modulation of sorbitol pathway with zopolrestat, an aldose reductase inhibitor, did not affect LPS-induced NO production and iNOS expression under high glucose condition. And also, sodium pyruvate, which is expected to normalize cytosolic $NADH/NAD^+$ ratio, did not show any significant effect at concentrations of up to 10 mM. Glucosamine marginally increased the endotoxin-induced nitrite release in both control and high glucose treated group. 6-diazo-5-oxonorleucine (L-DON) and azaserine, glutamine: fructose- 6-phosphate amidotransferase (GFAT) inhibitors, significantly diminished the augmentation effect of high glucose on endotoxin-induced NO production. On the other hand, negative modulation of GFAT inhibitors was not reversed by the treatment of glucosamine, suggesting the minimal involvement, if any, of glucosamine pathway in glucose-enhancing effect. In summary, these results strongly suggest that the hexosamine biosynthesis pathway and the activation of PKC via sorbitol pathway do not contribute to the augmenting effect of high glucose on endotoxin induced NO production in macrophage-like Raw264.7 cells.

  • PDF

LPS가 처리된 RAW 264.7 대식세포에서 Nrf2/HO-1 경로 조절을 통한 매실 추출물의 NO 생성 억제 효과 (Inhibition of NO Production by Ethanol Extract of Prunus mume Fruits in LPS-Stimulated RAW 264.7 Macrophages through Regulation of the Nrf2/HO-1 Signaling Pathway)

  • 강혜주;최은옥;정진우;박신형;박철;홍수현;신순식;정재훈;최영현
    • 대한한의학방제학회지
    • /
    • 제25권1호
    • /
    • pp.1-10
    • /
    • 2017
  • Objectives : The fruit of Prunus mume Siebold & Zucc. has been used as an alternative medicine and functional food in Korea and Japan for preventive and therapeutic purposes. However, its molecular actions and mechanism on anti-inflammatory activity have not been clearly investigated. The aim of this study was to clarify the anti-inflammatory activity of the ethanol extract of P. mume fruit (EEPM) in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells, and sought to understand the associated molecular mechanisms. Methods : Cytotoxicity was assessed by an MTT assay. The amount of nitric oxide (NO) production was determined by nitrite assay. The mRNA expression of inducible nitric oxide synthase (iNOS) was analyzed by RT-PCR. In addition, expression levels of iNOS, nuclear factor-erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) protein were detected by Western blotting. Results : Our data indicated that EEPM inhibited NO production in LPS-stimulated RAW264.7 cells in a concentration-dependent manner. At the mRNA and protein levels, EEPM suppressed LPS-induced iNOS expression. On the other hand, EEPM markedly enhanced HO-1 expression, which was associated with an induction and nuclear translocation of Nrf2. Moreover, the inhibitory effect of EEPM against LPS‑induced NO production was significantly enhanced by hemin, a HO-1 inducer; however, EEPM's effect on the production of NO was abolished by zinc protoporphyrin IX, a HO-1 inhibitor. Conclusion : The results suggest that EEPM can act as a suppressor agent on NO production through an activation of Nrf2/HO-1 signaling pathway, and may be a promising candidate for the treatment of inflammatory diseases.

NO와 Pro-Inflammatory Cytokine의 억제를 통한 호라복(胡蘿蔔)의 항염증효과 (Roots of Daucus carota sativa abrogates acute phase of Inflammation by the Inhibition of NO and Pro-Inflammatory Cytokine Production)

  • 이동진;박상미;황보민;정태영;김상찬;지선영
    • 한방안이비인후피부과학회지
    • /
    • 제26권2호
    • /
    • pp.45-57
    • /
    • 2013
  • Objectives : Daucus carota sativa has been frequently used as food supplements in many of the Asian countries, and a nutritional medical drug in traditional medicine. This research investigated the effects of Daucus carota sativa extract (DCE) on acute phases of inflammation in Raw 264.7 cells treated with lipopolysaccharide (LPS) in terms of the inhibition of nitric oxide (NO), prostaglandin $E_2$ ($PGE_2$) and pro-inflammatory cytokines production. Methods : NO, $PGE_2$, tumor necrosis factor (TNF)-${\alpha}$, interleukin-$1{\beta}$ and interleukin-6 contents were assayed by ELISA, and expressions of inflammation-related proteins such as inducible NO synthase (iNOS) were determined by immunoblot analyses. Results : DCE treatment attenuated the LPS ability to increase the productions of NO and $PGE_2$ as well as the protein level of iNOS in a concentration-dependent manner. Consistently, treatment of the cells with DCE suppressed the production of TNF-${\alpha}$, interleukin-$1{\beta}$ and interleukin-6. DCE also caused decreases of inhibitor of ${\kappa}B{\alpha}$ phosphorylation induced by LPS in the cells, which means DCE inhibition of NF-${\kappa}B$ activity. Furthermore, DCE blocked LPS-induced phosphorylation of p38 and SAPK/JNK. Conclusion : This study showing here may be of help to understand the action mechanism of DCE, and provide the information for the medical use of Daucus carota sativa for the inflammatory disease.

In Vitro 내독소 유도성 급성 폐손상에서 Pentoxifylline과 Neutrophil Elastase Inhibitor의 항염효과 (Anti-inflammatory Effects of Pentoxifylline and Neutrophil Elastase Inhibitor on Lipopolysaccharide-Induced Acute Lung Injury In Vitro)

  • 김영균;김승준;박용근;김석찬;김관형;문화식;송정섭;박성학;김상호
    • Tuberculosis and Respiratory Diseases
    • /
    • 제49권6호
    • /
    • pp.691-702
    • /
    • 2000
  • 연구배경 : 내독소 유도성 급성 폐손상(acute lung injury : ALI)은 비교적 임상에서 흔히 접하는 호흡기질환으로서, 조기에 적절한 치료가 이루어지지 않을 경우 예후가 좋지 않은 것으로 알려져 있다. 하지만 최근 몇 가지 보조치료약제가 임상에서 사용되고 있기는 하지만, 아직 ALI를 효과적으로 치료할 수 있는 약제는 개발되어 있지 않은 실정이다. 이에 본 연구지들은 최근 ALI의 새로운 보조치료약제로서의 가능성이 대두 pentoxifylline (PF) 및 ONO-5046(specific neutrophil elastase inhibitor)이 백서의 내독소 유도성 ALI와 관련된 염증반응에 대해 어떤 효과를 나타내는지 알아보고자 하였다. 방법 : 내독소 유도성 ALI의 생체외(in vitro) 모델을 확립하기 위해 백서의 폐포대식세포 및 말초혈액 호중구를 다양한 비율(1:0, 5:1, 1:1, 1:5, 0:1)로 혼합하여 내독소 자극 하에서 백서의 폐포상피세포주(L2 cells) 혹은 혈관내피세포주(IP2-E4 cells)와 함께 혼합 배양하였다. 모든 실험은 5군(대조군, LPS군, LPS+PF군, LPS+ONO군, LPS+PF+ONO군)으로 나누어 비교하였는데, 우선 다양한 비율로 혼합된 백서 폐포대식세포 및 말초혈액 호중구의 배양상층액으로부터 내독소 유도성 과산화음이온 생성능을 측정하고, 이들 염증세포들이 각 폐조직세포에 미치는 세포독성능을 측정하였다. 아울러 백서의 폐포대식세포로부터 내독소 유도성 TNF-$\alpha$, MCP-1, IL-6, IL-$1{\beta}$, IL-10 분비 및 TNF-$\alpha$ iNOS, MCP-1 mRNA 발현을 관찰하였다. 결과 : (1) 세포혼합비가 1:5일 때 LPS+PF+ONO군을 제외하고는 세포혼합비에 상관없이 LPS+PF군, LPS+ONO군 및 LPS+PF+ONO군 모두에서 각 세포혼합비의 LPS군에 비해 백서 폐포대식세포와 말초혈액 호중구로부터 내독소 유도성 과산화 음이온 생성능이 억제되는 경향을 보였다. (2) 백서 혈관내피세포(IP2-E4 cells)에 대한 염증세포들의 내독소 유도성 세포독성능은 세포혼합비에 상관없이 LPS+PF군, LPS+ONO군 및 LPS+PF+ONO군 모두에서 각 세포혼합비의 LPS군에 비해 감소하는 경향올 보였다. 하지만 백서 폐포상피세포(L2 cells)에 대한 염증세포들의 내독소 유도성 세포독성능은 세포혼합비 및 각 실험군에 따라 다양한 양상을 보였다. (3) LPS+PF군 및 LPS+PF+ONO군 포두에서 백서 LPS군에 비해 TNF-$\alpha$ 분비가 LPSrns에 비해 통계적으로 유의하게 감소되었으며, MCP-1 및 IL-10 분비도 LPS군에 비해 다소 감소 하는 경향을 보였다. 반면에 LPS+ONO군은 LPS군과 비교하여 백서 폐포대식세포로부터 내독소 유도성 cytokines 분비에 별 차이가 없었다. LPS+PF군, LPS+ONO군 및 LPS+PF+ONO군 모두에서 백서 폐포대식세포로부터 내독소 유도성 IL-$1{\beta}$ 및 IL-6 분비는 LPS군에 비해 오히려 증가하는 경향을 보였다. (4) LPS+PF군, LPS+ONO군 및 LPS+PF+ONO군 모두에서 백서 폐포대식셰포로부터 내독소 유도성 TNF-$\alpha$ 및 MCP-l mRNA 발현이 억제되는 경향을 보였으나, iNOS mRNA 발현은 오히려 증가하는 경향을 보였다. pentoxifylline은 백서의 염증세포들로부터 내독소 유도성 과산화 음이온 생성을 억제하였고 폐포대식세포로부터 TNF-$\alpha$ 및 MCP-1 mRNA 발현과 억제하여 폐조직세포 손상을 감소시켰으며 ONO-5046은 과산화 음이온 생성억제 및 TNF-$\alpha$ MCP-1 mRNA 발현억제, MCP-1의 분비를 억제하였을 뿐 아니라 항염증 매개물질인 IL-10 분비를 증가시킴으로써 폐조직세포의 손상을 방지할 수 있음을 확인하였다. pentoxifylline과 ONO-5046의 병용투여시에도 과산화 음이온 생성 및 일부 염증성 물즐의 mRNA의 발현 및 분비를 억제함으로써 폐조직세포의 손상을 방지함을 확인할 수 있었다. 결론 : 이상의 결과들로 보아 PF 및 ONO-5046은 내독소 유도성 ALI의 염증반응을 완화시키는 역할을 하는 것으로 추측되며, 향후 이 약제들은 ALI의 새로운 보조 치료제로 사용하기 위해서는 추가 연구가 필요할 것으로 생각되는 바이다.

  • PDF

진무탕(眞武湯)이 MIA 유도 골관절염 흰쥐 모델에 미치는 영향 (Effects of Jinmu-tang on the Osteoarthritis by MIA in Rats)

  • 양두화;우창훈;안희덕
    • 한방재활의학과학회지
    • /
    • 제28권1호
    • /
    • pp.19-31
    • /
    • 2018
  • Objectives The object of this study was to investigate the antioxidative and antiinflammatory effects of Jinmu-tang extract (JMT) on the Monosodium iodoacetate (MIA)-induced rat osteoarthritis. Methods To investigate the antioxidant capacities of JMT, we measured the total polyphenol and flavonoid, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-Azino-bis(3-ethyl-benzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activity. To evaluate the antioxidative and antiinflammatory effects of JMT, the rats were divided into 5 groups (n=8). Normal group was not induced by MIA and treated at all (N), control group was induced by MIA and not treated at all (Con), positive control group was induced by MIA and orally administered indomethacin 5 mg/kg (Indo) and experimental groups were induced by MIA and orally administered JMT 100 mg/kg (JMT100) and JMT 200 mg/kg (JMT200) for 4 weeks. The changes of anti-type II collagen antibody in serum, heme oxygenase-1 (HO-1), phosphorylated inhibitor of ${\kappa}B{\alpha}$ ($p-I{\kappa}B{\alpha}$), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS) and tumor necrosis factor alpha ($TNF-{\alpha}$) in knee joint tissue and histopathological observation (Hematoxylin & Eosin and Safranin-O stain) were measured. Results Total polyphenol and flavonoid levels of JMT were $26.90{\pm}0.33mg/g$ and $6.02{\pm}0.34mg/g$. $IC_{50}$ of L-ascorbic acid and JMT of DPPH radical scavenging activity were $1.35{\pm}0.07{\mu}g/ml$ and $52.95{\pm}0.97{\mu}g/ml$. $IC_{50}$ of L-ascorbic acid and JMT of ABTS radical scavenging activity were $3.18{\pm}0.02{\mu}g/ml$ and $91.49{\pm}1.74{\mu}g/ml$. In serum, the anti-type II collagen antibody levels of JMT100 and JMT200 groups were decreased significantly. In knee joint tissue, the HO-1 level of JMT200 was increased significantly. The $p-I{\kappa}B{\alpha}$ and $TNF-{\alpha}$ levels of JMT200 were decreased significantly. The COX-2 and iNOS levels of JMT groups were decreased significantly. In histopathological observation, in comparison with Con, synovial tissue, cartilage and proteoglycan of JMT100 and JMT200 were well preserved. Conclusions According to the results, It is considered that JMT has antioxidant and antiinflammatory effects for MIA-induced rat osteoarthritis, so it could be applied to osteoarthritis treatment.

각질형성세포에서 ROS로 유도된 염증반응에 대한 능실 추출물 및 그 분획물의 항염 효과 (Fractionated Trapa japonica Extracts Inhibit ROS-induced Skin Inflammation in HaCaT keratinocytes)

  • 남진주;김연준
    • 대한화장품학회지
    • /
    • 제41권1호
    • /
    • pp.45-55
    • /
    • 2015
  • 자외선은 외부적인 스트레스 자극인자로 작용하여 사람 각질형성세포에서 reactive oxygen species (ROS)와 비활성 코르티손을 활성 코르티솔로 전환시키는 효소인 $11{\beta}$-hydroxysteroid dehydrogenase type 1 ($11{\beta}$-HSD1)의 발현 및 활성을 증가시킨다고 알려져 있다. 또한, ROS가 증가된 피부에서는 염증 유발 사이토카인과 염증 매개 인자의 발현이 증가되어 결과적으로 염증반응을 일으키게 되는 원인이 된다. 본 연구에서는 각질형성세포(HaCaT)에서 $11{\beta}$-HSD1 억제제가 ROS 분해효소인 catalase의 생성을 회복시킴에 착안하여, $11{\beta}$-HSD1의 발현을 저해함과 동시에 ROS로부터 유도되는 염증 반응을 억제하는 천연물 소재를 발굴하고자 하였다. 그 중 능실 추출물과 그 분획물은 각각 $11{\beta}$-HSD1의 발현과 ROS 생성 증가를 억제하고, 염증성 사이토카인인 tumor necrosis factor (TNF)-${\alpha}$, interleukin (IL)-$1{\alpha}$, $-1{\beta}$의 발현을 억제하였다. 또한, 자외선에 의해 유도되는 염증 매개인자인 cyclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS), prostaglandin $E_2$ ($PGE_2$)의 생성을 저해하였다. 따라서 본 연구 결과로부터 능실 추출물 및 그 분획물은 $11{\beta}$-HSD1의 발현을 억제함과 동시에 ROS에 의해 유발된 피부 염증 반응을 효과적으로 저해함을 확인하였다.

Trimethyltin에 의한 랫드 해마의 신경세포 사멸과 iNOS의 연관성 (Inducible nitric oxide synthase is involved in neuronal death induced by trimethyltin in the rat hippocampus)

  • 장석원;최성영;박창남;안미정;신태균;김승준
    • 대한수의학회지
    • /
    • 제51권3호
    • /
    • pp.185-191
    • /
    • 2011
  • Trimethyltin chloride (TMT) has been used as a neurotoxin for inducing brain dysfunction and neuronal death. Neuronal death in the hippocampus by TMT may generate excessive nitric oxide, but there are few studies about nitric oxide synthase enzyme involved in the synthesis of nitric oxide. The purpose of present study is to analyze the TMT toxicity in each region of rat hippocampus. To evaluate the involvement of nitric oxide, we analyzed the effects of aminoguanidine known as a selective inhibitor for inducible nitric oxide synthase on behavioral changes and the hippocampus of rat by TMT toxicity. 6-week-old male Sprague-Dawley rats were administered with a single dose of TMT (8 mg/kg b.w., i.p.) and the control group was similarly administered with distilled water. TMT + aminoguanidine-treated groups were administered with aminoguanidine (10 mg/kg or 100 mg/kg b.w., i.p.) for 3 days prior to TMT injection. The rats were sacrificed 2 days after TMT administration. In the TMT-treated group, a number of cell losses were seen in CA1, CA3 and the dentate gyrus. In the TMT + aminoguanidine-treated group, neuronal death was seen in CA1 and CA3, but reduced in the dentate gyrus compared to the TMT-treated group. Western blot analysis showed that cleaved caspase-3 expression was increased in the TMT-treated group compared to the control group. However, the expression significantly declined in the TMT + aminoguanidine-treated group. The present findings suggest that inducible nitric oxide synthase is involved in neuronal death induced by TMT.

Crotamine stimulates phagocytic activity by inducing nitric oxide and TNF-α via p38 and NFκ-B signaling in RAW 264.7 macrophages

  • Lee, Kyung Jin;Kim, Yun Kyu;Krupa, Martin;Nguyen, Anh Ngoc;Do, Bich Hang;Chung, Boram;Vu, Thi Thu Trang;Kim, Song Cheol;Choe, Han
    • BMB Reports
    • /
    • 제49권3호
    • /
    • pp.185-190
    • /
    • 2016
  • Crotamine is a peptide toxin found in the venom of the rattlesnake Crotalus durissus terrificus and has antiproliferative, antimicrobial, and antifungal activities. Herein, we show that crotamine dose-dependently induced macrophage phagocytic and cytostatic activity by the induction of nitric oxide (NO) and tumor necrosis factor-alpha (TNF-α). Moreover, the crotamineinduced expression of iNOS and TNF-α is mediated through the phosphorylation of p38 and the NF-κB signaling cascade in macrophages. Notably, pretreatment with SB203580 (a p38-specific inhibitor) or BAY 11-7082 (an NF-κB inhibitor) inhibited crotamine-induced NO production and macrophage phagocytic and cytotoxic activity. Our results show for the first time that crotamine stimulates macrophage phagocytic and cytostatic activity by induction of NO and TNF-α via the p38 and NF-κB signaling pathways and suggest that crotamine may be a useful therapeutic agent for the treatment of inflammatory disease.