• Title/Summary/Keyword: iNOS$TNF-{\alpha}$$NF-{\kappa}B$

Search Result 211, Processing Time 0.032 seconds

Anti-inflammatory activity of Camellia japonica oil

  • Kim, Seung-Beom;Jung, Eun-Sun;Shin, Seung-Woo;Kim, Moo-Han;Kim, Young-Soo;Lee, Jong-Sung;Park, Deok-Hoon
    • BMB Reports
    • /
    • v.45 no.3
    • /
    • pp.177-182
    • /
    • 2012
  • Camellia japonica oil (CJ oil) has been used traditionally in East Asia to nourish and soothe the skin as well as help restore the elasticity of skin. CJ oil has also been used on all types of bleeding instances. However, little is known about its anti-inflammatory effects. Therefore, the anti-inflammatory effects of CJ oil and its mechanisms of action were investigated. CJ oil inhibited LPS-induced production of NO, $PGE_2$, and TNF-${\alpha}$ in RAW264.7 cells. In addition, expression of COX-2 and iNOS genes was reduced. To evaluate the mechanism of the anti-inflammatory activity of CJ oil, LPS-induced activation of AP-1 and NF-${\kappa}B$ promoters was found to be significantly reduced by CJ oil. LPS-induced phosphorylation of $I{\kappa}B{\alpha}$, ERK, p38, and JNK was also attenuated. Our results indicate that CJ oil exerts anti-inflammatory effects by downregulating the expression of iNOS and COX-2 genes through inhibition of NF-${\kappa}B$ and AP-1 signaling.

Inulin stimulates NO synthesis via activation of PKC-$\alpha$ and protein tyrosine kinase, resulting in the activation of NF-$textsc{k}$B by IFN-ν-primed RAW 264.7 cells

  • Koo, Hyun-Na;Hong, Seung-Heon;Kim, Hyung-Min
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2003.11a
    • /
    • pp.78-78
    • /
    • 2003
  • Inulin, an active component of Chicorium intybus root, has been shown to stimulate the growth of bifidobacteria, and inhibit colon carcinogenesis. NO mediates a number of the host-defense functions of activated macrophages, including antimicrobial and tumoricidal activity. We examined the effect of inulin on the synthesis of NO in RAW 264.7 cells. Inulin alone had no effect, whereas inulin with IFN-ν synergistically increased the NO production and inducible NO synthase (iNOS) expression in RAW 264.7 cells. Synergy between IFN-ν and inulin was mainly dependent on inulin-induced TNF-${\alpha}$ secretion. Also, protein kinase C (PKC)-${\alpha}$ was involved in the inulin-induced NO production. Inulin-mediated NO production was inhibited by the protein tyrosine kinase (PTK) inhibitor, tyrphostin AG126. Since iNOS gene transcriptions have been shown to be under the control of the NF -$\kappa$B/Rel family of transcription factors, we assessed the effect of inulin on NF -$\kappa$B/Rel using an EMSA. Inulin produced strong induction of NF-$\kappa$B/Rel binding, whereas AP-l binding was slightly induced in RAW 264.7 cells. Inulin stimulated phosphorylation and degradation of I$\kappa$B-${\alpha}$. These results suggest that in IFN-ν-primed RAW 264.7 cells inulin might stimulate NO synthesis via activation of PKC-${\alpha}$ and PTK, resulting in the activation of NF-$\kappa$B.

  • PDF

Immunostimulating activity of maysin isolated from corn silk in murine RAW 264.7 macrophages

  • Lee, Jisun;Kim, Sun-Lim;Lee, Seul;Chung, Mi Ja;Park, Yong Il
    • BMB Reports
    • /
    • v.47 no.7
    • /
    • pp.382-387
    • /
    • 2014
  • Corn silk (CS) has long been consumed as a traditional herb in Korea. Maysin is a major flavonoid of CS. The effects of maysin on macrophage activation were evaluated, using the murine macrophage RAW 264.7 cells. Maysin was isolated from CS by methanol extraction, and preparative $C_{18}$ reverse phase column chromatography. Maysin was nontoxic up to $100{\mu}g/ml$, and dose-dependently increased TNF-${\alpha}$ secretion and iNOS production by 11.2- and 4.2-fold, respectively, compared to untreated control. The activation and subsequent nuclear translocation of NF-${\kappa}B$ was substantially enhanced upon treatment with maysin ($1-100{\mu}g/ml$). Maysin also stimulated the phosphorylation of Akt and MAPKs (ERK, JNK). These results indicated that maysin activates macrophages to secrete TNF-${\alpha}$ and induce iNOS expression, via the activation of the Akt, NF-${\kappa}B$ and MAPKs signaling pathways. These results suggest for the first time that maysin can be a new immunomodulator, enhancing the early innate immunity.

Obovatol Inhibits Inflammation Mediator Generation and Colon Carcinoma SW620, HCT116 Cell Growth Through Induction of Apoptotic Cell Death Via Inactivation of $NF-{\kappa}B$ (Obovatol의 염증매개 생성 억제와 세포자멸사를 통한 Colon Carcinoma SW620, HCT116 세포의 세포증식에 대한 영향)

  • Jung, In-Mo;Song, Ho-Sueb
    • Journal of Acupuncture Research
    • /
    • v.25 no.2
    • /
    • pp.75-89
    • /
    • 2008
  • 목적 : 후박(厚朴)(Magnolia obovata)에서 추출한 낮은 농도의 obovatol 약침액의 RAW264.7 세포에서 LPS로 유발된 염증, $TNF-{\alpha}$로 유발된 human colon carcinoma SW620 및 HCT116 세포의 세포증식에 대한 영향과 그 기전을 살펴보고자 하였다. 방법 : RAW264.7 세포에서 LPS로 염증을 유발하고 낮은 농도의 obovatol 약침액을 처리한 후 cell viability, NO 생성량, iNOS와 COX-2의 발현, $NF-{\kappa}B$활성, 전사능력을 관찰하기 위해 WST-1 assay, NO determination assay, western blot analysis, EMSA, luciferase activity assay를 시행하였고, HCT116, SW620 세포에 $TNF-{\alpha}$로 증식을 유도하고 낮은 농도의 obovatol 약침액을 처리한 후 cell growth, apoptosis 및 apoptosis와 연관된 $NF-{\kappa}B$의 활성 변화를 관찰하기 위해 WST-1, Cell morphogy test, DAPI staining and TUNEL assay, EMSA, luciferase activity assay를 시행하였다. 결과 : 1. RAW264.7 세포에서 낮은 농도의 obovatol 약침액 처리는 $NF-{\kappa}B$의 활성 및 전사능력을 낮추고 iNOS와 COX-2의 발현과 NO 생성을 감소시켜 LPS로 유발된 염증을 억제하였다. 2. HCT116, SW620 세포에서 낮은 농도의 obovatol 약침액 처리는 $NF-{\kappa}B$의 활성을 낮추어 세포자멸사를 촉진함으로써 $TNF-{\alpha}$로 유발된 암세포의 성장을 억제하였다. 결론 : 이상의 결과는 낮은 농도의 obovatol 약침액이 항염 및 인간 전립선암세포주인 SW620, HCT116에 대한 증식억제 효과가 있음을 입증한 것이며, 향후 이를 바탕으로 한 생체 연구에서의 긍정적인 결과는 obovatol 약침액이 만성염증성 질환 및 대장암의 예방과 치료에 대한 효과적인 치료제 개발에 초석이 될 것으로 기대된다.

  • PDF

Anti-inflammaory effects of the Gamroeum in vivo and in vitro (감로음(甘露飮)의 항염증 효과에 대한 실험적 연구)

  • Lim, In-Ho;Jung, Ho-Jun;Kim, Sang-Chan;Jee, Seon-Young
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.23 no.2
    • /
    • pp.13-26
    • /
    • 2010
  • Objectives : The present study was conducted to evaluate the anti-inflammatory effects of the Gamroeum water extracts (GRE) in vivo and in vitro. Methods : The effects of GRE on anti-inflammation were measured by production of NO, $PGE_2$ (Prostaglandin $E_2$), iNOS (inducible Nitric Oxide Synthase), COX-2, $NF{\kappa}B$ (Nuclear Factor kappa B), TNF-$\alpha$ (Tumor Necrosis Factor-alpha) and IL-$1{\beta}$ (Interleukin-$1{\beta}$), IL-6 in Raw 264.7 macrophage cells stimulated with LPS. Results : 1. In machrophage cells, LPS displayed significant stimulatory effects on the production of NO and $PGE_2$. However, GRE showed significant inhibitory effects on NO and $PGE_2$ release. The level of NO and $PGE_2$ was decreased by GRE in a concentration dependent manner as compared with LPS only group. 2. Immunoblot analysis verified that LPS stimulation significantly increased the iNOS and COX-2 protein level, but GRE suppressed the induction of iNOS and COX-2 protein at a concentration dependent manner. 3. GRE reduced the elevated production of TNF-$\alpha$, IL-$1{\beta}$ and IL-6 by LPS. Moreover, the inhibitory effects of GRE was occurred in a dose-dependent manner. 4. GRE significantly reduced the expression of NF-${\kappa}B$ protein in nuclear fraction. 5. GRE effectively inhibited the increases of hind paw skin thicknesses and inflammatory cell infiltrations induced by carrageenan treatment. It, therefore, considered that GRE will be favorably inhibited the acute edematous inflammations. Conclusions : These results indicated that GRE could have anti-inflammatory capacity by inhibiting the production of NO, $PGE_2$ and cytokines in vitro and by reducing the formation of carrageenan-induced paw edema in vivo. Moreover, inhibitory effects of GRE on the macrophage activation were attributable to the reduction of some of inflammatory factors by inhibiting iNOS and COX-2 through the suppression of NF-${\kappa}B$.

Anti-Inflammatory Effect of Fermented Artemisia princeps Pamp in Mice

  • Joh, Eun-Ha;Trinh, Hien-Trung;Han, Myung-Joo;Kim, Dong-Hyun
    • Biomolecules & Therapeutics
    • /
    • v.18 no.3
    • /
    • pp.308-315
    • /
    • 2010
  • Essential oil-excluded Artemisia princeps Pamp var Ssajuarissuk (AP) was fermented with Lactobacillus brevis K-1, which was isolated from cabbage Kimchi, and the anti-inflammatory effects of AP and fermented AP (FAP) on lipopolysaccharide (LPS)-induced inflammatory response in peritoneal macrophages were investigated. AP and FAP inhibited LPS-induced TNF-$\alpha$, IL-$1{\beta}$, COX-2, iNOS and COX-2 expression, as well as NF-${\kappa}B$ activation. AP and FAP also reduced ear thickness, inflammatory cytokine (TNF-$\alpha$, IL-$1{\beta}$ and IL-6) expression and NF-${\kappa}B$ activation with 12-O-tetradecanoylphorbol-13-acetate (TPA) induced dermatitis in mice. Furthermore, AP and FAP also reduced exudate volume, cell number, protein amount, inflammatory cytokines (TNF-$\alpha$, IL-$1{\beta}$ and IL-6) expression and NF-${\kappa}B$ activation in carrageenan-induced air pouch inflammation in mice. The inhibitory effects of FAP were more potent than those of non-fermented AP. Based on these findings, we propose that FAP can improve inflammatory diseases, such as dermatitis, by inhibiting the NF-${\kappa}B$ pathway.

Diallyl Disulfide Prevents Cyclophosphamide-Induced Hemorrhagic Cystitis in Rats through the Inhibition of Oxidative Damage, MAPKs, and NF-κB Pathways

  • Kim, Sung Hwan;Lee, In Chul;Ko, Je Won;Moon, Changjong;Kim, Sung Ho;Shin, In Sik;Seo, Young Won;Kim, Hyoung Chin;Kim, Jong Choon
    • Biomolecules & Therapeutics
    • /
    • v.23 no.2
    • /
    • pp.180-188
    • /
    • 2015
  • This study investigated the possible effects and molecular mechanisms of diallyl disulfide (DADS) against cyclophosphamide (CP)-induced hemorrhagic cystitis (HC) in rats. Inflammation response was assessed by histopathology and serum cytokines levels. We determined the protein expressions of nuclear transcription factor kappa-B (NF-${\kappa}B$), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), oxidative stress, urinary nitrite-nitrate, malondialdehyde (MDA), and 8-hydroxy-2'-deoxyguanosine (8-OHdG). Finally, we studied the involvement of mitogen-activated protein kinases (MAPKs) signaling in the protective effects of DADS against CP-induced HC. CP treatment caused a HC which was evidenced by an increase in histopathological changes, proinflammatory cytokines levels, urinary nitrite-nitrate level, and the protein expression of NF-${\kappa}B$, COX-2, iNOS, TNF-${\alpha}$, p-c-Jun N-terminal kinase (JNK), and p-extracellular signal regulated kinase (ERK). The significant decreases in glutathione content and glutathione-S-transferase and glutathione reductase activities, and the significant increase in MDA content and urinary MDA and 8-OHdG levels indicated that CP-induced bladder injury was mediated through oxidative DNA damage. In contrast, DADS pretreatment attenuated CP-induced HC, including histopathological lesion, serum cytokines levels, oxidative damage, and urinary oxidative DNA damage. DADS also caused significantly decreased the protein expressions of NF-${\kappa}B$, COX-2, iNOS, TNF-${\alpha}$, p-JNK, and p-ERK. These results indicate that DADS prevents CP-induced HC and that the protective effects of DADS may be due to its ability to regulate proinflammatory cytokines production by inhibition of NF-${\kappa}B$ and MAPKs expressions, and its potent anti-oxidative capability through reduction of oxidative DNA damage in the bladder.

Viridicatol from Marine-derived Fungal Strain Penicillium sp. SF-5295 Exerts Anti-inflammatory Effects through Inhibiting NF-κB Signaling Pathway on Lipopolysaccharide-induced RAW264.7 and BV2 Cells

  • Ko, Wonmin;Sohn, Jae Hak;Kim, Youn-Chul;Oh, Hyuncheol
    • Natural Product Sciences
    • /
    • v.21 no.4
    • /
    • pp.240-247
    • /
    • 2015
  • Viridicatol (1) has previously been isolated from the extract of the marine-derived fungus Penicillium sp. SF-5295. In the course of further biological evaluation of this quinolone alkaloid, anti-inflammatory effect of 1 in RAW264.7 and BV2 cells stimulated with lipopolysaccharide (LPS) was observed. In this study, our data indicated that 1 suppressed the expression of well-known pro-inflammatory mediators such as inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2, and consequently inhibited the production of iNOS-derived nitric oxide (NO) and COX-2-derived prostaglandin E2 ($PGE_2$) in LPS stimulated RAW264.7 and BV2 cells. Compound 1 also reduced mRNA expression of pro-inflammatory cytokines such as $interleukin-1{\beta}$ ($IL-1{\beta}$), interleukin-6 (IL-6), and tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$). In the further evaluation of the mechanisms of these anti-inflammatory effects, 1 was shown to inhibit nuclear factor-kappa B ($NF-{\kappa}B$) pathway in LPS-stimulated RAW264.7 and BV2 cells. Compound 1 blocked the phosphorylation and degradation of inhibitor kappa B $(I{\kappa}B)-{\alpha}$ in the cytoplasm, and suppressed the translocation of $NF-{\kappa}B$ p65 and p50 heterodimer in nucleus. In addition, viridicatol (1) attenuated the DNA-binding activity of $NF-{\kappa}B$ in LPS-stimulated RAW264.7 and BV2 cells.

Anti-inflammatory Effects of the Aqueous Extract of Hwangnyeonhaedok-tang in LPS-activated Macrophage Cells (LPS로 활성화된 대식세포에서 황련해독탕(黃連解毒湯) 물추출물의 염증매개물질 억제효과)

  • Kim, Dae-Hee;Park, Sook-Jahr;Jung, Ji-Yoon;Kim, Sang-Chan;Byun, Sung-Hui
    • The Korea Journal of Herbology
    • /
    • v.24 no.4
    • /
    • pp.39-47
    • /
    • 2009
  • Objectives : Hwangnyeonhaedok-tang (Huanglian Jiedu Tang; HHT) has been widely used for purging' 'fire' and lessening virulence of any pathogenic organism. However it has been rarely conducted to evaluate the immuno-biological activity. In this study, we evaluated anti-inflammatory effects of HHT in LPS-activated Raw264.7 cells. Methods : Cells were treated with $1\;{\mu}g/ml$ of LPS 1 h prior to the addition of HHT. Cell viability was measured by MTT assay. The production of NO was determined by reacting cultured medium with Griess reagent. PGE2 and proinflammatory cytokines were detected by ELISA. Expression of iNOS, COX-2, $I{\kappa}B{\alpha}$ and NF-${\kappa}B$ were analyzed by immunoblot analysis. Results : All three doses of HHT (0.03, 0.10 and 0.30 mg/ml) had no significant cytotoxicity during the entire experimental period. The levels of NO and PGE2 were dramatically augmented by LPS compared to control. However, HHT extract dose-dependently reduced these increases. Expression of iNOS and COX-2 protein were also decreased by treatment with HHT extract. Furthermore, HHT extract significantly reduced the nuclear translocation of NF-${\kappa}B$ which is critical in regulating inflammation through transcription of iNOS and COX-2. In addition, HHT extract reduced the elevated production of inflammatory cytokines including TNF-$\alpha$, IL-$1{\beta}$ and IL-6. Conclusions : The results in this study demonstrate that HHT extract exerts anti-inflammatory activities through the inhibition of NO, PGE2 and proinflammatory cytokines production via the suppression of NF-${\kappa}B$.

The Effects of Jeondo-san on Anti-Inflammation and Anti-Propionibacterium acnes (전도산(顚倒散)이 여드름 유발균과 염증에 미치는 영향)

  • Choi, Kwan-Ho;Seo, Hyeong-Sik
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.20 no.2 s.33
    • /
    • pp.89-101
    • /
    • 2007
  • Objectives : This study was carried out to investigate the effects of Jeondo-San(JDS) on anti-Inflammation and anti-Propionibacterium acnes. Methods : The effects of JDS on anti-Inflammation and anti-Propionibacterium acnes were measured by the cytotoxicity of Raw 264.7 cell, the inhibition for NO, $TNF-{\alpha}$, $PGE_2$, iNOS and COX-2, the blocking $NF-{\kappa}B$ into nucleus and the sterilizing power for Propionibacterium acnes. Results : 1. All concentrations of JDS has no cytotoxicity in Raw 264.7 cell. 2. All concentrations of JDS inhibited the production of NO in the Raw 264.7 cell stimulated with LPS. 3. All concentrations of JDS did not significantly inhibit the production of $TNF-{\alpha}$ in the Raw 264.7 cell stimulated with LPS. 4. All concentrations of JDS inhibited the production of $PGE_2$ in the Raw 264.7 cell stimulated with LPS. 5. All concentrations of JDS did not inhibit the expression of COX-2 but concentrations of 50\;{\mu}g/ml$, 100\;{\mu}g/ml$ JDS inhibited iNOS expression in the Raw 264.7 cell stimulated with LPS. 6. Concentrations of 50\;{\mu}g/ml$, 100\;{\mu}g/ml$ JDS has the effect of blocking $NF-{\kappa}B$ into nucleus in LPS-induced macrophage Raw 264.7 cell. 7. All concentrations of IDS did not have the inhibitory effect of Propionibactrium acnes. Conclusions : The present date suggest that JDS has a effect on the stage of inflammation of acne.

  • PDF