• 제목/요약/키워드: hysteretic behaviors

검색결과 79건 처리시간 0.027초

Development of seismic collapse capacity spectra for structures with deteriorating properties

  • Shu, Zhan;Li, Shuang;Gao, Mengmeng;Yuan, Zhenwei
    • Earthquakes and Structures
    • /
    • 제12권3호
    • /
    • pp.297-307
    • /
    • 2017
  • Evaluation on the sidesway seismic collapse capacity of the widely used low- and medium-height structures is meaningful. These structures with such type of collapse are recognized that behave as inelastic deteriorating single-degree-of-freedom (SDOF) systems. To incorporate the deteriorating effects, the hysteretic loop of the nonlinear SDOF structural model is represented by a tri-linear force-displacement relationship. The concept of collapse capacity spectra are adopted, where the incremental dynamic analysis is performed to check the collapse point and a normalized ground motion intensity measure corresponding to the collapse point is used to define the collapse capacity. With a large amount of earthquake ground motions, a systematic parameter study, i.e., the influences of various ground motion parameters (site condition, magnitude, distance to rupture, and near-fault effect) as well as various structural parameters (damping, ductility, degrading stiffness, pinching behavior, accumulated damage, unloading stiffness, and P-delta effect) on the structural collapse capacity has been performed. The analytical formulas for the collapse capacity spectra considering above influences have been presented so as to quickly predict the structural collapse capacities.

송전철탑의 풍응답 감소를 위한 마찰형 보강기구의 에너지 소산특성 분석 실험 (Experimental Investigation on the Energy Dissipation of Friction-type Reinforcing Members Installed in a Transmission Tower for Wind Response Reduction)

  • 박지훈;문병욱;이성경;민경원
    • 한국소음진동공학회논문집
    • /
    • 제17권7호
    • /
    • pp.649-661
    • /
    • 2007
  • Friction-type reinforcing members(FRM) to enhance the resistance to wind loads of a transmission tower through both stiffness strengthening and damping increase are energy dissipation devices that utilize bending deflection of a tower leg. In this paper, the hysteretic behavior of the transmission tower structure with FRMs was experimentally investigated through cyclic loading tests on a half scale substructure model. Firstly, the variation of friction forces and durability of the FRM depending on the type of friction-inducing materials used in the FRM were examined by performing the cyclic loading tests on the FRM. Secondly, cyclic loading tests of a half-scale two-dimensional substructure model of a transmission tower with FRMs were conducted. Test results show that the FRM, of which desired maximum friction force is easily regulated by adjusting the amplitude of the torque applied to the bolts, have stable hysteretic behaviors and it is found that there exists the optimum torque depending on a design load by investigating the amount of energy dissipation of the FRMs according to the increase of torque.

송전철탑의 풍응답 감소를 위한 마찰형 보강기구의 에너지 소산특성 분석 실험 (Experimental Investigation on the Energy Dissipation of Friction-type Reinforcing Members Installed in a Transmission Tower for Wind Response Reduction)

  • 박지훈;문병욱;이성경;민경원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.568-577
    • /
    • 2007
  • Friction-type reinforcing members (FRM) to enhance the resistance to wind loads of a transmission tower through both stiffness strengthening and damping increase are energy dissipation devices that utilize bending deflection of a tower leg. In this paper, the hysteretic behavior of the transmission tower structure with FRMs was experimentally investigated through cyclic loading tests on a half scale substructure model. Firstly, the variation of friction forces and durability of the FRM depending on the type of Friction-inducing materials used in the FRM were examined by performing the cyclic loading tests on the FRM. Secondly, Cyclic loading tests of a half-scale two-dimensional substructure model of a transmission tower with FRMs were conducted. Test results show that the FRM, of which desired maximum friction force is easily regulated by adjusting the amplitude of the torque applied to the bolts, have stable hysteretic behaviors and it is found that there exists the optimum torque depending on a design load by investigating the amount of energy dissipation of the FRMs according to the increase of torque.

  • PDF

시험도로 노상토의 불포화 함수특성 및 이력현상 (Soil-Water Characteristics and Hysteretic Behaviors on Unsaturated Pavement Subgrades in Test Roads)

  • 박성완;신길호;김병수
    • 한국도로학회논문집
    • /
    • 제8권2호
    • /
    • pp.95-104
    • /
    • 2006
  • 일반적으로 도로의 하부인 노상층은 불포화토 상태로 존재하기 때문에 함수비의 변동을 예측하기 위해서는 불포화 함수특성곡선(soil-water characteristic curve)의 추정은 필수적이다. 따라서, 국내 대표적인 노상토인 다짐된 화강풍화계열 노상토를 대상으로 함수특성을 정량화하기 위하여 pressure plate 장치를 활용하여 건조 및 습윤 이력과정의 실험을 각각 수행한 후 이를 토대로 불포화토 함수특성에 대한 해석을 수행하였다. 실험결과, 화강 풍화 노상토의 함수비를 좌우하는 흡수력이 건조와 습윤 과정에 있어 서로 다른 수치를 나타내었고 흡수력에 따른 불포화 투수계수와 습윤용적 그리고 확산 등의 흐름특성을 통하여 이력(hysteresis)을 확인하였다. 이를 토대로 도로하부의 연중흡수력을 추정하였다.

  • PDF

슬릿형상에 따른 강재댐퍼의 이력거동 (Hysteretic Behaviors of Metallic Dampers with the Various Slit Shape)

  • 이현호;김세일
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제15권5호
    • /
    • pp.199-208
    • /
    • 2011
  • 본 연구의 목적은 강재댐퍼 면내에 형성되는 슬릿 형상이 댐퍼의 강도 및 변형 능력에 미치는 영향을 평가하는데 있다. 이를 위하여 댐퍼 스트럿의 높이 및 각도에 대한 실험체 12개를 만들어 전단실험을 수행하였다. 분석결과, 댐퍼의 초기강성, 항복강도 및 항복 후 2차강성의 크기를 고려할 때 스트럿 높이가 200mm이고, 스트럿 각도 $60^{\circ}$인 S형 강재댐퍼의 내진성능이 가장 우수한 것으로 평가되었다. 또한 기존내력식을 이용한 댐퍼의 항복강도 비교결과, 내력식의 결과보다 실험 결과값이 크게 나와 댐퍼의 항복강도는 스트럿높이, 스트럿각도 등의 크기정도에 지배 받는 것으로 나타났다.

Cyclic test for beam-to-column abnormal joints in steel moment-resisting frames

  • Liu, Zu Q.;Xue, Jian Y.;Peng, Xiu N.;Gao, Liang
    • Steel and Composite Structures
    • /
    • 제18권5호
    • /
    • pp.1177-1195
    • /
    • 2015
  • Six specimens are tested to investigate the cyclic behavior of beam-to-column abnormal joints in steel moment-resisting frames, which are designed according to the principle of strong-member and weak-panel zone. Key parameters include the axial compression ratio of column and the section depth ratio of beams. Experimental results indicate that four types of failure patterns occurred during the loading process. The $P-{\Delta}$ hysteretic loops are stable and plentiful, but have different changing tendency at the positive and negative direction in the later of loading process due to mechanical behaviors of specimens. The ultimate strength tends to increase with the decrease of the section depth ratio of beams, but it is not apparent relationship to the axial compression ratio of column, which is less than 0.5. The top panel zone has good deformation capacity and the shear rotation can reach to 0.04 rad. The top panel zone and the bottom panel zone don't work as a whole. Based on the experimental results, the equation for shear strength of the abnormal joint panel zone is established by considering the restriction of the bottom panel zone to the top panel zone, which is suitable for the abnormal joint of H-shaped or box column and beams with different depths.

추계학적 선형화 방법 및 다목적 유전자 알고리즘을 이용한 지진하중을 받는 인접 구조물에 대한 비선형 감쇠시스템의 최적 설계 (Optimal design of nonlinear damping system for seismically-excited adjacent structures using multi-objective genetic algorithm integrated with stochastic linearization method)

  • 옥승용;송준호;고현무;박관순
    • 한국지진공학회논문집
    • /
    • 제11권6호
    • /
    • pp.1-14
    • /
    • 2007
  • 인접 구조물의 지진응답 제어를 위한 비선형 감쇠시스템의 최적 설계 방법에 관하여 연구하였다. 최적 설계를 위한 목적 함수로는 구조물의 응답과 감쇠기의 총 사용량을 고려하였으며, 상충하는 두 목적함수를 합리적인 수준에서 동시에 최소화하는 해를 구하기 위하여 유전자 알고리즘에 기반한 다목적 최적화 방법을 도입하였다. 또한, 최적화 과정에서 요구되는 비선형 시간이력해석을 수행하지 않고도, 비선형 이력감쇠기로 연결된 구조물의 지진응답을 효율적으로 평가하기 위하여 추계학적 선형화 방법을 접목하였다. 제시하는 방법의 효율성을 검증하기 위한 수치 예로서 20층과 10층의 인접 빌딩을 고려하였으며, 두 빌딩을 연결하는 비선형 감쇠시스템으로는 입력전압의 크기에 따라 변화하는 감쇠성능을 보이는 MR 감쇠기를 도입하였다. 제시하는 방법을 통하여 MR 감쇠기의 각 층별 최적 개수 및 감쇠용량을 결정할 수 있었으며, 이는 일반적인 균등분포 시스템에 비해 유사한 제어성능을 보이면서도 훨씬 경제적이었다. 또한, 인접구조물간 충돌에 대하여도 확률적으로 안정적인 거동을 보임을 검증하였으며, 제시하는 방법이 준능동 제어시스템의 최적 배치를 결정하기 위한 설계문제에도 적용할 수 있음을 보였다.

Degradation and damage behaviors of steel frame welded connections

  • Wang, Meng;Shi, Yongjiu;Wang, Yuanqing;Xiong, Jun;Chen, Hong
    • Steel and Composite Structures
    • /
    • 제15권4호
    • /
    • pp.357-377
    • /
    • 2013
  • In order to study the degradation and damage behaviors of steel frame welded connections, two series of tests in references with different connection constructions were carried out subjected to various cyclic loading patterns. Hysteretic curves, degradation and damage behaviours and fatigue properties of specimens were firstly studied. Typical failure modes and probable damage reasons were discussed. Then, various damage index models with variables of dissipative energy, cumulative displacement and combined energy and displacement were summarized and applied for all experimental specimens. The damage developing curves of ten damage index models for each connection were obtained. Finally, the predicted and evaluated capacities of damage index models were compared in order to describe the degraded performance and failure modes. The characteristics of each damage index model were discussed in depth, and then their distributive laws were summarized. The tests and analysis results showed that the loading histories significantly affected the distributive shapes of damage index models. Different models had their own ranges of application. The selected parameters of damage index models had great effect on the developing trends of damage curves. The model with only displacement variable was recommended because of a more simple form and no integral calculation, which was easier to be formulated and embedded in application programs.

Seismic Behavior of High-Strength Concrete Square Short Columns Confined in Thin Steel Shell

  • Han, Byung-Chan;Yun, Hyun-Do;Chung, Soo-Young
    • KCI Concrete Journal
    • /
    • 제12권1호
    • /
    • pp.23-34
    • /
    • 2000
  • Experiments were carried out to investigate the seismic behaviors, such as lateral strength, ductility and energy-dissipation capacity. of high-strength concrete (HSC) square short column confined in thin steel shell. The primary objective of the study was to investigate the suitability of using HSC square columns confined in thin steel shell in region of moderate-to-high seismic risk. A total of six columns, consisting of two ordinarily reinforced concrete square short columns and four reinforced concrete square short columns confined in thin steel shell was tested. Column specimens, short columns in a moment resisting frame with girder. were tested under a constant axial and reversed cyclic lateral loads. To design the specimens. transverse reinforcing methods, level of axial load applied, and the steel tube width-thickness ratio (D/t) were chosen as main parameters. Test results were also discussed and compared in the light of improvements in general behaviors, ductility, and energy-absorption capacities. Compared to conventionally reinforced concrete columns, the HSC columns confined in thin steel shell had similar load-displacement hysteretic behavior but exhibited greater energy-dissipation characteristics . It is concluded that, in strong earthquake areas, the transverse reinforcing method by using a thin steel shell (D/t=125) is quite effective to make HSC short columns with very strong and ductile.

  • PDF

능동제에 구조물의 지진에너지 응답 (Earthquake Energy Response of Actively-controlled Structures)

  • 민경원
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.399-408
    • /
    • 2000
  • IN analyzing earthquake response of structures important focus is on their diaplacements and shear forces. However seismic technology of passive energy dissipation makes focus on the seismic energy distribution of structures. The passive dampers enhance the capability of energy dissipation by their hysteretic behavior thus preventing the structural plastic deformation. In this paper the building structure with an active controller is analyzed with the view of earthquake energy distribution under elastic and plastic behaviors. The active control makes an effect of increasing damping capability which absorbs most of the earthquake input energy. Finally the different active gains resulting from the plastic deformation are applied to the active analysis and control forces and earthquake energy response are compared.

  • PDF