• 제목/요약/키워드: hypoxia

검색결과 836건 처리시간 0.026초

Pharmacological Properties of CDBT in Hypoxia-induced Neuronal Cell Injury and Their Underlying Mechanisms

  • Park, Sang-kyu;Jung, Eun-sun;Cha, Ji-yoon;Cho, Hyun-kyoung;Yoo, Ho-ryong;Kim, Yoon-sik;Seol, In-chan
    • 대한한방내과학회지
    • /
    • 제40권3호
    • /
    • pp.425-442
    • /
    • 2019
  • Objectives: This study aimed to reveal the pharmacological properties of the newly prescribed herbal mixture, Chenmadansamgamibokhap-tang(CDBT), against hypoxia-induced neuronal cell injury (especially mouse hippocampal neuronal cell line, HT-22 cells) and their corresponding mechanisms. Methods: A cell-based in vitro experiment, in which a hypoxia condition induced neuronal cell death, was performed. Various concentrations of the CDBT were pre-treated to the HT-22 cells for 4 h before 18 h in the hypoxia chamber. The glial cell BV-2 cells were stimulated with $IFN{\gamma}$ and LSP to produce inflammatory cytokines and reactive oxygen species. When the neuronal HT-22 cells were treated with this culture solution, the drug efficacy against neuronal cell death was examined. Results: CDBT showed cytotoxicity in the normal condition of HT-22 cells at a dose of $125{\mu}g/mL$ and showed a protective effect against hypoxia-induced neuronal cell death at a dose of $31.3{\mu}g/mL$. CDBT prevented hypoxia-induced neuronal cell death in a dose-dependent manner in the HT-22 cells by regulating $HIF1{\alpha}$ and cell death signaling. CDBT prevented neuronal cell death signals and DNA fragmentation due to the hypoxia condition. CDBT significantly reduced cellular oxidation, cell death signals, and caspase-3 activities due to microglial cell activations. Moreover, CDBT significantly ameliorated LPS-induced BV-2 cell activation and evoked cellular oxidation through the recovery of redox homeostasis. Conclusions: CDBT cam be considered as a vital therapeutic agent against neuronal cell deaths. Further studies are required to reveal the other functions of CDBT in vivo or in the clinical field.

Long Noncoding RNA Expression Profiling Reveals Upregulation of Uroplakin 1A and Uroplakin 1A Antisense RNA 1 under Hypoxic Conditions in Lung Cancer Cells

  • Byun, Yuree;Choi, Young-Chul;Jeong, Yongsu;Yoon, Jaeseung;Baek, Kwanghee
    • Molecules and Cells
    • /
    • 제43권12호
    • /
    • pp.975-988
    • /
    • 2020
  • Hypoxia plays important roles in cancer progression by inducing angiogenesis, metastasis, and drug resistance. However, the effects of hypoxia on long noncoding RNA (lncRNA) expression have not been clarified. Herein, we evaluated alterations in lncRNA expression in lung cancer cells under hypoxic conditions using lncRNA microarray analyses. Among 40,173 lncRNAs, 211 and 113 lncRNAs were up- and downregulated, respectively, in both A549 and NCI-H460 cells. Uroplakin 1A (UPK1A) and UPK1A-antisense RNA 1 (AS1), which showed the highest upregulation under hypoxic conditions, were selected to investigate the effects of UPK1A-AS1 on the expression of UPK1A and the mechanisms of hypoxia-inducible expression. Following transfection of cells with small interfering RNA (siRNA) targeting hypoxia-inducible factor 1α (HIF-1α), the hypoxia-induced expression of UPK1A and UPK1A-AS1 was significantly reduced, indicating that HIF-1α played important roles in the hypoxia-induced expression of these targets. After transfection of cells with UPK1A siRNA, UPK1A and UPK1A-AS1 levels were reduced. Moreover, transfection of cells with UPK1A-AS1 siRNA downregulated both UPK1A-AS1 and UPK1A. RNase protection assays demonstrated that UPK1A and UPK1A-AS1 formed a duplex; thus, transfection with UPK1A-AS1 siRNA decreased the RNA stability of UPK1A. Overall, these results indicated that UPK1A and UPK1A-AS1 expression increased under hypoxic conditions in a HIF-1α-dependent manner and that formation of a UPK1A/UPK1A-AS1 duplex affected RNA stability, enabling each molecule to regulate the expression of the other.

AURKB, in concert with REST, acts as an oxygen-sensitive epigenetic regulator of the hypoxic induction of MDM2

  • Kim, Iljin;Choi, Sanga;Yoo, Seongkyeong;Lee, Mingyu;Park, Jong-Wan
    • BMB Reports
    • /
    • 제55권6호
    • /
    • pp.287-292
    • /
    • 2022
  • The acute response to hypoxia is mainly driven by hypoxia-inducible factors, but their effects gradually subside with time. Hypoxia-specific histone modifications may be important for the stable maintenance of long-term adaptation to hypoxia. However, little is known about the molecular mechanisms underlying the dynamic alterations of histones under hypoxic conditions. We found that the phosphorylation of histone H3 at Ser-10 (H3S10) was noticeably attenuated after hypoxic challenge, which was mediated by the inhibition of aurora kinase B (AURKB). To understand the role of AURKB in epigenetic regulation, DNA microarray and transcription factor binding site analyses combined with proteomics analysis were performed. Under normoxia, phosphorylated AURKB, in concert with the repressor element-1 silencing transcription factor (REST), phosphorylates H3S10, which allows the AURKB-REST complex to access the MDM2 proto-oncogene. REST then acts as a transcriptional repressor of MDM2 and downregulates its expression. Under hypoxia, AURKB is dephosphorylated and the AURKB-REST complex fails to access MDM2, leading to the upregulation of its expression. In this study, we present a case of hypoxia-specific epigenetic regulation of the oxygen-sensitive AURKB signaling pathway. To better understand the cellular adaptation to hypoxia, it is worthwhile to further investigate the epigenetic regulation of genes under hypoxic conditions.

저산소/재관류로부터 청폐사간탕의 PC12 세포 보호 효과 (Protective Effect of Metabolized Chungpesagan-tang on Hypoxia/Reperfusion Induced-PC12 Cell Damage)

  • 소윤조
    • 생약학회지
    • /
    • 제36권2호통권141호
    • /
    • pp.151-157
    • /
    • 2005
  • This research was performed to investigate the protective effect of Chungpesagan-tang (CST) from hypoxia/reperfusion induced-PC12 cell damage. To elucidate the mechanism of the protective effect of CST, cell viability, changes in activities of superoxide dismutase, glutathione peroxidase, catalase, caspase 3 and the production of malondialdehyde were observed after treating PC12 cells with CST which was metabolized by rat liver homogenate. Pretreatment of CST with liver homogenate appeared to increase its protective effect against hypoxia/reperfusion insult. The result showed that CST exhibited the highest protective effect against hypoxia/reperfusion at the dose of $1\;{\mu}g/ml$ in PC12 cells, probably by recovering the redox enzyme activities and MDA to control level.

Inhibitory Effects of Ginseng Total Saponins on Hypoxia-induced Dysfunction and Injuries of Cultured Astrocytes

  • Seong, Yeon-Hee;Kim, Hack-Seang
    • Archives of Pharmacal Research
    • /
    • 제20권2호
    • /
    • pp.103-109
    • /
    • 1997
  • The effects of ginseng total saponins (GTS) on hypoxic damage of primary cultures of astrocytes were studied. Hypoxia was created by placing cultures in an air tight chamber that was flushed with 95% $N_2/5%CO_2$ for 15 min before being sealed. Cultures showed evidence of significant cell injury after 24 h of hypoxia (increased lactate dehydrogenase (LDH) content in the culture medium, cell swelling and decreased glutamate uptake and protein content). Addition of GTS (0.1, 0.3 mg/ml) to the cultures during the exposure to hypoxic conditions produced dose-dependent inhibition of the LDH efflux. GTS (0.1, 0.3 mg/ml) also produced significant inhibition of the increased cell volume of astrocytes measured by $[^3H]$ O-methyl-D-glucose uptake under the hypoxic conditions. Decreased glutamate uptake and protein content was inhibited by GTS. These data suggest that GTS prevents astrocytic cell injury induced by severe hypoxia in vitro.

  • PDF

수면관련 호흡장애에서의 신경정신과적 증상 (Neuropsychiatric Dysfunction in Sleep-Related Breathing Disorders)

  • 윤인영
    • 수면정신생리
    • /
    • 제4권2호
    • /
    • pp.140-146
    • /
    • 1997
  • Sleep-related breathing disorders, especially sleep apnea syndrome are complicated by neuropsychiatric dysfunction such as excessive daytime sleepiness, cognitive dysfunction, and depression. As the determinants of daytime sleepiness, sleep fragmentation is more influential than nocturnal hypoxia. Daytime sleepiness can be improved by continuous positive airway pressure (CPAP) or surgery in up to 95% of the treated subjects. Both sleepiness and nocturnal hypoxia would cause cognitive dysfunction. While impairments in attention and verbal memory are more related with sleepiness and prominent in mild to moderate sleep apnea syndrome (SAS), impairments in general intellectual function and executive function are more related with nocturnal hypoxia and prominent in severe SAS. Several cognitive deficits related with nocturnal hypoxia may be irreversible despite CPAP or surgical treatments. So, early detection and early appropriate treatment of SAS would prevent sleepiness and cognitive deterioration.

  • PDF

저산소상태에서 육미지황원의 뇌신경세포 보호효과에 대한 연구 (Effects of Yukmijihwangwon on Hypoxia of Neuronal Cells)

  • 강봉주;홍성길;조동욱
    • 한국한의학연구원논문집
    • /
    • 제7권1호
    • /
    • pp.115-124
    • /
    • 2001
  • Yukmijihwangwon (YM) has been known to reinforce the vital essence and have antioxidant activities. This study was designed to examine the inhibitory effects of YM against in vitro hypoxia/reperfusion-induced inflammatory response. We have characterized the production of prostaglandin $E_2$ and arachidonic acid during hypoxia/reperfusion in the human neuroblastoma SK-N-MC and human monocytic macrophage U937 cells and the ingibitory effect of YM on these inflammation-related substance formation has been found out in this study. To investigate inhibition of COX expression by YM during hypoxia in vitro. This result suggested that YM used in this experiment reinforced antiinflammatory potentials and protected cells against hypoxia/reperfusion induced inflammatory response.

  • PDF

간효소에 의해 대사된 양격산화탕의 저산소/재관류로부터 PC12 세포 보호효과 (Protective Effect of Yangguksanwha-tang Metabolized by Liver Homogenate on Hypoxia-reperfusion Induced PC12 Cell Damage)

  • 소윤조
    • 약학회지
    • /
    • 제49권1호
    • /
    • pp.97-102
    • /
    • 2005
  • The protective effect of Yangguksanwha-tang (YST) against hypoxia-reperfusion insult was investigated in PC12 cells. To elucidate the mechanism of the protective effect of YST, cell viability, the changes in activities of superoxide dismutase, glutathione peroxidase, catalase, caspase 3 and the production of malondialdehyde were observed after treating PC12 cells with YST which was metabolized by rat liver homogenate. Pretreatment of YST with liver homogenate appeared to increase its protective effect against hypoxia-reperfusion insult. The result showed that YST had the highest protective effect against hypoxia/reperfusion at the dose of $2\;{\mu}g/ml$ in PC12 cells, probably by recovering the redox enzyme activities and MDA to control level.

에스트로젠 수용체알파에 의한 Hypoxia Inducible Factor-1의 전사 활성조절 (Activation of Hypoxia Inducible Factor-1 Alpha by Estrogen Receptor Alpha)

  • 유광희;이영주
    • 약학회지
    • /
    • 제54권2호
    • /
    • pp.102-105
    • /
    • 2010
  • Our previous results showed that hypoxia inducible factor-1 (HIF-1) activated estrogen receptor (ER) in the absence of ligand. In this study, we have studied the effect ER overexpression on the activation of HIF-1. ER overexpression induced transcription activation of hypoxia response element driven luciferase and vascular endothelial growth factor. As a negative control, the effect of ER on androgen receptor response element was used. Our result indicate that the two ER$\alpha$ and HIF-1 signaling pathways shares part of the activation pathway.

HIF-1α-Dependent Induction of Carboxypeptidase A4 and Carboxypeptidase E in Hypoxic Human Adipose-Derived Stem Cells

  • Moon, Yunwon;Moon, Ramhee;Roh, Hyunsoo;Chang, Soojeong;Lee, Seongyeol;Park, Hyunsung
    • Molecules and Cells
    • /
    • 제43권11호
    • /
    • pp.945-952
    • /
    • 2020
  • Hypoxia induces the expression of several genes through the activation of a master transcription factor, hypoxia-inducible factor (HIF)-1α. This study shows that hypoxia strongly induced the expression of two carboxypeptidases (CP), CPA4 and CPE, in an HIF-1α-dependent manner. The hypoxic induction of CPA4 and CPE gene was accompanied by the recruitment of HIF-1α and upregulation in the active histone modification, H3K4me3, at their promoter regions. The hypoxic responsiveness of CPA4 and CPE genes was observed in human adipocytes, human adipose-derived stem cells, and human primary fibroblasts but not mouse primary adipocyte progenitor cells. CPA4 and CPE have been identified as secreted exopeptidases that degrade and process other secreted proteins and matrix proteins. This finding suggests that hypoxia changes the microenvironment of the obese hypoxic adipose tissue by inducing the expression of not only adipokines but also peptidases such as CPA4 and CPE.